Строение и функции микротрубочек клетки. Микрофиламенты

Известно значительное количество питательных сред, используемых для культивирования и поддержания (сохранения) микроорганизмов. Питательной средой в микробиологии называют среды, содержащие различные соединения сложного или простого состава, которые применяются для размножения микроорганизмов в лабораторных или промышленных условиях. Еще в 1930 году их было классифицировано не менее двух тысяч наименований, но число ингредиентов, являющихся их неотъемлемыми компонентами, относительно невелико, а их композиции создаются на определенных общих принципах. Для размножения любых бактерий необходимо обеспечить подходящее биофизическое окружение и биохимические питательные компоненты. Любая питательная среда должна соответствовать следующим требованиям: содержать все необходимые для роста питательные вещества в легко усвояемой форме; иметь оптимальную влажность, вязкость, рН, быть изотоничной, сбалансированной с высокой буферной емкостью и, по возможности, прозрачной. Для роста автотрофных бактерий потребности в питательных веществах довольно просты: вода, двуокись углерода и соответствующие неорганические соли. Например, бактерии рода Nitrobacter ассимилируют СО 2 и получают энергию путем окисления нитритов в нитраты. Гетеротрофные бактерии получают энергию в результате окисления (диссимиляции) восстановленных углеродных соединений.

Гетеротрофные бактерии используют органические соединения в двух целях: 1) в качестве источника энергии; при этом органическое вещество окисляется или расщепляется с высвобождением энергии и образованием ряда конечных продуктов типа СО 2 , органических кислот и др; 2) в качестве субстратов, ассимилируемых непосредственно с образованием клеточных компонентов или для их синтеза в реакциях, требующих затрат энергии. Так, E.coli способна к росту на простой среде, содержащей только глюкозу и неорганические соли. Молочнокислые же бактерии растут на сложных средах, содержащих в качестве добавок ряд органических соединений (витамины, аминокислоты и др.), которые клетки не в состоянии синтезировать самостоятельно. Такие соединения называются факторами роста. Организмы, которые нуждаются в их добавлении к ростовой среде, называются ауксотрофными по соответствующим соединениям. Другая группа организмов, способная к росту на простых средах, содержащих источник углерода и энергии, а также набор основных биогенных элементов, получила название прототрофных . Следует учитывать и то, что в природе встречаются бактерии, которые способны размножаться в местах с низким пищевым потоком углерода – до 0,1 мг/л в день. Они получили название олиготрорфных, противоположную группу для них составляют бактерии копиотрофные – способные к росту на богатых пищевых субстратах.


Выбор питательной среды зависит в значительной степени от целей эксперимента, а существующая классификация питательных сред учитывает характеристику их следующих особенностей.

По составу питательные среды делятся на натуральные и синтетические . Натуральными называют среды, которые состоят из продуктов растительного или животного происхождения, имеющих неопределенный химический состав. Примерами питательных сред такого типа являются среды, представляющие собой смесь продуктов распада белков (казеина, мышц млекопитающих), образующихся при их гидролизе. Кислотный (НСl) гидролиз белков используется для приготовления полных гидролизатов. Действие ферментов типа трипсина, панкреатина, папаина, приводит лишь к частичному (неполному) гидролизу белков, в результате чего образуются пептоны . Как правило, на пептонных питательных средах микроорганизмы растут лучше, чем на питательных средах, приготовленных из полных гидролизатов или смесей аминокислот. При ферментативном гидролизе, вероятно, сохраняются лабильные факторы роста. Кроме того, многие микроорганизмы лучше размножаются на средах, содержащих небольшие пептиды, потому что их они могут усваивать непосредственно, а отсутствующие аминокислоты – нет. Обычно в составе такой среды ферментативный гидролизат белка обеспечивает потребность в таких источниках азота, как аминокислоты, углеводы (глюкоза), используется как источник углерода и энергии, соли удовлетворяют потребности бактерий в неорганических ионах, а дрожжевой экстракт обеспечивает потребности в витаминах. К питательным средам неопределенного состава можно отнести и среды, полученные на основе растительного сырья: картофельный агар, томатный агар, отвары злаков, дрожжей, пивное сусло, настои сена и соломы и др. Основное назначение таких питательных сред – выделение, культивирование, получение биомассы и поддержание культур микроорганизмов.

К числу сред неопределенного состава относят и среды полусинтетические . В такую среду вносят известные соединения как явно необходимые; а также добавляют небольшое количество дрожжевого или кукурузного экстракта (или любого другого природного продукта) для обеспечения неизвестных потребностей роста. Такие среды часто используются в случае промышленного культивирования биологических объектов для получения продуктов метаболизма.

Синтетические среды – это среды определенного состава, представленные чистыми химическими соединениями, взятыми в точно указанных концентрациях и соотношениях отдельных элементов. Обязательными компонентами таких сред являются неорганические соединения (соли) и углерод- и азотсодержащие вещества (типичными представителями являются глюкоза и (NH 4) 2 SO 4 . Часто к таким средам добавляют буферные растворы и хелатирующие соединения. Ауксотрофные организмы растут на таких средах только при добавлении соответствующих факторов роста. Основное назначение таких питательных сред – изучение особенностей физиологии и метаболизма микроорганизмов, выделение генетических рекомбинантов и т. д.

По назначению среды разделяют на элективные и дифференциально-диагностические . Элективные среды обеспечивают преимущественное развитие одного или целой физиологической группы микроорганизмов. Например, для преимущественного выделения грамотрицательных бактерий бывает достаточным добавления в питательную среду трифенилметановых красителей (кристаллический фиолетовый, малахитовый зеленый и т. д.). Для выделения стафилоккоков в среду может быть добавлен хлористый натрий в концентрации 7,5 %. При этой концентрации рост других бактерий подавляется. Элективные среды применяются на первом этапе выделения чистой культуры бактерий, т. е. при получении накопительной культуры.

Дифференциально-диагностические среды применяются для быстрой идентификации близкородственных видов микроорганизмов, для определения видовой принадлежности, в клинической бактериологии и др. Принцип построения дифференциально-диагностических сред основан на том, что разные виды бактерий различаются между собой по биохимической активности и имеют неодинаковый набор ферментов, расщепляющих субстраты, входящие в состав питательной среды.

В состав дифференциально-диагностической среды входят:

а) основная питательная среда, обеспечивающая размножение бактерий;

б) определенный химический субстрат, отношение к которому является диагностическим признаком для данного микроорганизма;

в) цветной индикатор, изменение окраски которого свидетельствует о биохимической реакции и наличии данной ферментной системы у исследуемого микроорганизма.

Например, среда Эндо позволяет отличить клоны, сбраживающие лактозу от клонов, не обладающих этим свойством. Основными компонентами этой среды являются питательный (пептонный) агар, углевод и основной фуксин, обесцвеченный сульфитом (реактив Шиффа). Исходная питательная среда окрашена в розовый цвет. Микроорганизмы, не сбраживающие лактозу, образуют бесцветные колонии. При сбраживании лактозы до ацетальдегида последний реагирует с сульфитом и развививается красная окраска соответствующих колоний.

Среда с эозином и метиленовым синим (среда Левина) в качестве индикаторов содержит эозин и метиленовый синий и исходно окрашена в черно-синий цвет. Клетки, осуществляющие брожение, образуют колонии, окрашенные в черный с металлическим блеском цвет, а колонии, не обладающие этим свойством, бесцветны. Подобные изменения окраски происходят потому, что красители присутствуют в среде не в виде самостоятельных соединений, а в виде комплексов с веществами питательной среды. При низких значениях рН эти комплексы выпадают в осадок, исходные же красители в этих условиях растворимы, при больших рН комплексы красителей бесцветны, тогда как метиленовый синий приобретает синюю окраску. Данная среда позволяет дифференцировать бактерии рода Escherichia от бактерий рода Proteus .

По консистенции среды могут быть жидкими, полужидкими, твердыми, сыпучими . Жидкие питательные среды получают при растворении в воде определенного необходимого набора питательных веществ, макро- и микроэлементов. По составу они могут быть как натуральными, так и синтетическими. Рост микроорганизмов в жидкой среде может происходить в периодической (закрытой) системе, в этом случае после инокуляции среды не происходит ни добавления, ни удаления каких-либо компонентов, кроме газовой фазы (закрытая система). При проточном (непрерывном) культивировании характерна постоянная подача свежих питательных компонентов со скоростью, равной скорости удаления среды (открытая система).

Среды в твердом состоянии в форме плотных гелей используются в бактериологии со времен Р. Коха. Наиболее важным преимуществом использования твердых сред является то, что на них можно выращивать микроорганизмы в виде колоний, образующихся из отдельных клеток популяции.

Приготовление твердых питательных сред достигается добавлением к жидким средам определенных уплотнителей, в качестве которых могут выступать агар, желатина, силикагель, каррагенан. Наиболее распространенным из уплотнителей является агар – полисахарид, выделяемый из красных морских водорослей и состоящий из двух полисахаридов – агарозы (70 %) и агаропектина. Он обладает рядом полезных свойств, в частности: 1) способен образовывать в воде гели;

2) плавится при температуре 100 °С и затвердевает при 45 °С; 3) не расщепляется под влиянием ферментов большинства видов микроорганизмов; 4) термолабильные вещества и живые микроорганизмы не разрушаются при добавлении к нагретому до 45 °С расплавленному агару, если смесь сразу же охладить; 5) агаровые гели имеют высокую степень прозрачности; 6) обычно используемые концентрации
1,5 ‑ 2,0 % являются относительно невысокими и их использование экономично.

Желатина – белок, приготовленный из кожи и костей, – в настоящее время используется для специальных целей, поскольку образуемый ею гель плавится при температурах около 25 – 30 °С. Кроме того, желатина разжижается протеолитическими ферментами многих микроорганизмов. «Уплотняющая» концентрация желатины – 17 – 20 %.

Силикагелем называют двуокись кремния (SiO 2). Его стерильный золь готовят из раствора силиката натрия и перед использованием, для того чтобы вызвать образование геля, к нему добавляют питательную среду, содержащую электролиты. Среды на основе силикагеля
(1,5 – 2,0 %) используют для получения культур автотрофных бактерий, так как при этом в среде отсутствуют органические вещества. При добавлении в такие минеральные среды различных органических веществ можно исследовать способность гетеротрофных бактерий использовать их в качестве единственных источников углерода. С помощью силикагелиевых сред также можно определять потребности бактерий в витаминах.

Каррагенан («растительная желатина») – добывается путем экстракции из определенных видов красных морских водорослей. Калиевые соли некоторых типов каррагенанов способны образовывать плотные (2 %) прозрачные гели, которые могут быть заменителями агара. Каррагенан значительно дешевле агара, не разрушается большинством видов бактерий. Однако разливать приготовленные среды следует при высокой температуре – 55 – 60 °С.

Полужидкие среды содержат гелеобразующее вещество в низкой (0,3 – 0,7 %) концентрации и имеют мягкую желеподобную консистенцию. Такие среды пригодны для изучения подвижности и хемотаксиса клеток, культивирования микроаэрофилов.

Сыпучие среды представляют собой массу в той или иной степени измельченного и увлажненного сырья (чаще всего, растительного). Основное их назначение – использование в пищевой промышленности (получение соевого соуса или рисовой водки), сельском хозяйстве (силосование кормов) и т. д.

В бактериологической практике чаще всего используются сухие питательные среды, которые получают в промышленных масштабах – триптические гидролизаты дешевых непищевых продуктов (рыбные отходы, мясокостная мука, технический казеин) и питательный агар. Сухие среды могут храниться в течение длительного времени, удобны при транспортировке, имеют относительно стандартный состав.

Питательные среды классифицируются по происхождению, консистенции, составу, целевому назначению.

А. По происхождению питательные среды делятся на естественные, искусственные, синтетические.

Естественными питательные среды называются в тех случаях, когда для выращивания микроорганизмов используются натуральные продукты (молоко, свернутая сыворотка и др.).

Искусственные питательные среды – это среды, которые готовятся по специальным прописям из различных продуктов, например, мясо-пептонный агар (МПА) или мясо-пептонный бульон (МПБ).

И естественные, и искусственные среды могут быть растительного (картофельная среда) или животного(молочные, мясные среды) происхождения.

Синтетическими питательными средами называются такие, которые состоят из растворов химически чистых соединений в точно установленных дозировках. Синтетические среды используются, когда выращиваемую бактериальную клеточную массу необходимо освободить от балластных органических соединений, входящих в состав обычных питательных сред.

Например, синтетические среды необходимы при получении бактериальных аллергенов или при изучении метаболических потребностей микроорганизмов. Преимущество таких питательных сред состоит в том, что они легко воспроизводимы, так как имеют постоянный состав.

Б. По консистенции различают питательные среды жидкие, полужидкие и плотные.

Жидкие среды готовят, используя экстракты, растворы, гидролизаты различных исходных продуктов. Таким образом, вещества, необходимые для питания бактерий, находятся в растворенном состоянии. (Примеры: МПБ, солевой бульон и др.).

Полужидкие среды готовятся на основе жидких с добавлением в их состав 0,2-1% агара-агара или другого уплотнителя. Уплотнители – вещества, придающие средам требуемую консистенцию. В качестве уплотнителя чаще всего используется агар-агар (по-малайски – желе) – это полисахарид - продукт переработки некоторых морских водорослей; он плавится при температуре 80-86 о С, а затвердевает при 40 о С). Желатина тоже является уплотнителем; она представляет собой экстракт из тканей, содержащих много коллагена (костной или хрящевой). Желатину добавляют в питательные среды в количестве 10-22%. Температура плавления желатины – 25 о С, что делает её неудобной для выращивания большинства микроорганизмов; оптимальная температура культивирования которых составляет 37 о С.

Кроме того, некоторые бактерии выделяют протеолитические ферменты, разлагающие желатину.

Плотные питательные среды тоже готовятся на основе жидких, но содержащие агар-агара должно быть не менее 1,5-2%. (Примеры: МПА, сахарный агар).

Таким образом, консистенция питательных сред определяется количеством содержащихся в их составе агара-агара.

В. По составу питательные среды могут быть простыми и сложными.

Простые содержат минимальное количество компонентов (например: МПБ, МПА).

Сложные готовятся путём добавления к простым определённых дополнительных компонентов (крови, сыворотки, глюкозы и др.).

Г. По целевому назначению питательные среды делят на основные, элективно-селективные, дифференциально-диагностические, транспортные.

К основным относятся среды, применяемые для выращивания многих бактерий (примеры МПА, МПБ).

Элективно-селективные среды предназначены для избирательного выделения и накопления микроорганизмов определённого вида (или определённой группы) из материалов, содержащих разнообразную постороннюю микрофлору. При этом состав сред определяется биологическими особенностями, по которым данный микроорганизм отличается от большинства других. Компоненты таких питательных сред обеспечивают преимущественный рост искомых микроорганизмов и (или) подавление в той или иной степени рост сопутствующей микрофлоры.

По консистенции эти среды могут быть жидкими(например: 1% пептонная вода для выделения холерного вибриона) или твёрдыми (желточно-солевой агар для выделения стафилококков).

Дифференциально-диагностические среды предназначены для разграничения отдельных видов или типов микроорганизмов.

Состав таких питательных сред основан на том, что отдельные виды (или типы) бактерий различаются между собой по биохимической активности вследствие неодинакового набора ферментов.

В состав таких сред входит обычно:

Ÿ питательная основа (МПБ или МПА), обеспечивающая рост изучаемых микроорганизмов;

Ÿ субстат, выявляющий наличие ферментов (например, лактоза, глюкоза);

Ÿ индикатор. Индикаторы – это вещества, меняющие свой цвет в зависимости от рН среды. Их используют не только для определения кислотности среды, но и вводят в состав питательной среды для выявления биохимических свойств микробов.

Изменение цвета среды указывает на образование кислоты или щёлочи в результате ферментативной деятельности микробов (например: индикатор Андреде в кислой среде имеет красную окраску, при нейтральном значении рН-бесцветную; аналогичным образом действует индикатор фуксин).

Примеры дифференциально-диагностических сред: среда Эндо, позволяющая отличать лактозоположительные и лактозоотрицательные энтеробактерии; жидкая среда Раппопорт, выявляющая различия тифозных и паратифозных бактерий и многие другие.

Выделяют транспортные среды (консервирующие) , которые используются для первичного посева и транспортировки исследуемого материала. Они предотвращают отмирание патогенных микроорганизмов и способствуют подавлению сапрофитов. К этой группе относятся: глицериновая смесь, глицериновый консервант с солями лития и др.

Приведённая классификация в большой степени условна, так как некоторые среды могут быть одновременно и дифференциально-диагностическими, и селективными (например, среда Плоскирева, ЖСА и другие).

В настоящее время в лабораторной практике часто используются сухие питательные среды, которые выпускаются в виде полуфабрикатов. Для их производства используется рентабельное непищевое сырьё, отходы мясной и рыбной промышленности. Применение сухих сред избавляет лаборатории от трудоёмкого процесса приготовления обычных сред, позволяет получать сопоставимые результаты в разных лабораториях и приближает к разрешению вопроса о стандартизации питательных сред. Технология приготовления таких сред проста, она указана на этикетке. Сухие питательные среды удобны в транспортировке и хранении.

1. По консистенции среды делят на:

а) жидкие : пептонная вода (ПВ), мясопептонный бульон (МПБ), сахарный МПБ; применяют для изучения физиолого-биохимических свойств микроорганизмов, для накопления их биомассы или продуктов обмена;

б) полужидкие : мясопептонный агар (МПА) и др.; применяют обычно для хранения культур;

в) плотные или твердые : МПА, мясопептонный желатин, свернутая сыворотка, свернутый яичный белок; применяют для выделения микроорганизмов, изучения морфологии колоний, диагностических целей, количественного учета микроорганизмов и т.д.;

г) сыпучие : разваренное пшено, кварцевый песок, пропитанный питательным раствором; применяют для хранения посевного материала и культур – продуцентов в микробиологической и медицинской промышленности;

д) сухие – гигроскопические порошки с влажностью до 10 %, выпускаемые промышленностью; они могут быть различного назначения (простые, специальные, элективные, дифференциально-диагностические); имеют ряд преимуществ: стандартность, простота хранения и транспортировки, простота приготовления; их хранят в герметически закрытой посуде, в темноте; они должны хорошо растворяться в воде при комнатной температуре.

В качестве уплотнителя сред обычно используют агар (0,5-2 %), реже – желатин (10-15 %) или селикагель. Агар – полисахарид, выделенный из морских водорослей. Он способен образовывать в воде гели, плавящиеся при температуре 100° С и уплотняющиеся при 45° С. К полужидким средам агар добавляют в количестве 0,5 % (0,3-0,7 %), к плотным – 1,5-2 %. Выпускают в виде бесцветных пластинок или порошка.

2. По составу среды делят на:

а) естественные – натуральные продукты животного или растительного происхождения: молоко, яйца, овощи, животные ткани, желчь, сыворотка крови;

б) искусственные – среды, приготовленные по специальным рецептам из различных настоев или отваров животного или растительного происхождения с добавлением неорганических солей, углеводов, азотистых веществ;

в) синтетические – среды, приготовленные из определенных химических соединений в точно указанных концентрациях, способных обеспечить азотное, углеродное, минеральное питание; состав их всегда точно известен и постоянен, поэтому они широко используются для изучения метаболизма и генетики бактерий.

3. По назначению среды делят на:

а) основные (простые) – используют для культивирования многих видов микроорганизмов: ПВ, МПБ, МПА, питательный агар (ПА), сусло-агар, сусло жидкое, питательный желатин; на простых средах хорошо растут прототрофные бактерии; они служат основой для приготовления ряда сложных питательных сред;

б) специальные (сложные) – используют для выделения и культивирования тех микроорганизмов, которые не могут расти на простых средах: сахарный МПБ, сахарный МПА, сывороточный МПБ, кровяной МПА, асцитический МПБ, сывороточный агар;

в) элективные (избирательные) – используют для выделения определенного вида из мест естественного обитания и для получения накопительных культур; на этих средах преимущественно растет определенный вид, другие не растут или растут плохо: щелочная ПВ (для холерного вибриона), среда Сабуро (для грибов), желточно-солевой агар (для стафилококка), сывороточные среды – среда Ру и среда Леффлера (для дифтерийных коринебактерий), среда Китта-Тароцци (для анаэробов), среды с желчью (для тифо-паратифозных бактерий), среды с глицерином (для микобактерий туберкулеза);

Среды обогащения – используются при незначительном количестве возбудителя в патологическом материале; на этих средах выделяемый вид микроба растет быстрее и интенсивнее других, рост которых подавляется ингибиторами: среда Мюллера, среда Лейфсона. Последняя содержит селенит натрия, который подавляет жизнедеятельность кишечной флоры, не препятствуя размножению шигелл и сальмонелл при посеве испражнений больных дизентерией или брюшным тифом.

г) дифференциально-диагностические среды используют для изучения биохимических свойств и дифференцировки (отличия) одного вида микроорганизмов от другого по его ферментативным свойствам: среды Эндо, Левина, Плоскирева, среды Гисса. Состав сред подбирается таким образом, чтобы четко выявить характерные отличия ферментативных свойств одного вида от другого.

Среда Эндо состоит из МПА, 1 % лактозы, фуксина и сульфита натрия, который его обесцвечивает, исходная среда имеет светло-розовый цвет.

Среда Левина состоит из МПА, лактозы, эозина, метиленовой сини и фосфорнокислого натрия, исходная среда имеет красно-фиолетовый цвет.

Среда Плоскирева состоит из МПА, лактозы, бриллиантового зеленого, йода, нейтрального красного, солей желчных кислот, минеральных солей. Эта среда также является элективной, т.к. подавляет рост многих микробов (кишечной палочки и др.) и способствует лучшему росту некоторых болезнетворных бактерий (возбудителей брюшного тифа, паратифов).

Перечисленные среды широко используются для идентификации бактерий семейства Enterobacteriaceae . Они позволяют дифференцировать патогенные микроорганизмы от постоянного обитателя кишечника – кишечной палочки. E. coli способна расщеплять входящую в состав этих сред лактозу, т.к. вырабатывает фермент галактозидазу , в отличие от патогенных представителей семейства. При расщеплении лактозы образуются кислые продукты (например, ацетальдегид), которые изменяют цвет индикатора, присутствующего в среде.

При росте на среде Эндо E. coli образует красные колонии с металлическим блеском; на среде Левина – темно-синие колонии; на среде Плоскирева – красные колонии. Сальмонеллы и шигеллы (возбудители брюшного тифа и дизентерии) образуют на этих средах бесцветные колонии, т.к. не сбраживают лактозу.

Т.о., на одной и той же дифференциально- диагностической среде отмечается различный характер роста разных видов бактерий из-за различия в ферментативной активности, что позволяет отличить один вид от другого.

Среды Гисса служат для выявления различий в сахаролитических свойствах микробов с целью их идентификации. Они состоят из ПВ, 1% какого-либо углевода (глюкоза, лактоза, маннит, мальтоза, сахароза), индикатора Андреде (кислый фуксин, обесцвеченный едким натром). Эти среды могут готовиться полужидкими с теми же сахарами, но с индикатором ВР (водный голубой краситель + розоловая кислота). В зависимости от ферментации того или иного углевода определенным видом микроорганизмов изменяется цвет среды с этим углеводом. В результате получается "пестрый ряд", характерный для данного вида бактерий.

В настоящее время дифференциально-диагностические среды выпускаются в виде сухих порошков.

4. Консервирующие среды применяются для первичного посева и транспортировки исследуемого материала. Они предотвращают отмирание патогенных микроорганизмов и подавляют развитие сапрофитов. К ним относятся глицериновая смесь (2 части 0,85 % NaCl, 1 часть глицерина, 1 часть 15-20 % Na 3 PO 4), глицериновый консервант с солями Li, гипертонический раствор NaCl.

5. Особые питательные среды применяются для культивирования патогенных спирохет и простейших. Они содержат нативные белки (сыворотку или кровь), кусочки свежих органов и тканей (почки кролика, мозговая ткань кур); либо применяют синтетические питательные среды с определенным набором аминокислот.

По назначению питательные среды подразделяют на следующие основные категории.

Универсальные - среды, на которых хорошо растут многие виды патогенных и непатогенных бактерий. К ним относятся: мясо-пептонный бульон (МПБ = мясная вода + 1% пептона + 0,5% NaCl), мясо-пептонный агар (МПА = МПБ + 2-3% агара).

Дифференциально-диагностические - среды, позволяющие отличать одни виды бактерий от других по их ферментативной активности или культуральным проявлениям. К ним относятся среды Эндо, Левина, Плоскирева, Гисса и многие др.

Селективные (синонимы: избирательные, элективные, обогатительные) - среды, со­держащие вещества, используемые микроорганизмами определенных видов и не благоприятствующие или даже препятствующие росту других микроорганизмов. Се­лективные среды позволяют направленно отбирать из исследуемого материала оп­ределенные виды бактерий. Сюда относятся среды Мюллера, селенитовая, Рапопорт, 1%-ная пептонная вода и др.

Дифференциально-селективные - среды, сочетающие в себе свойства диф­ференциально-диагностических и селективных сред. Они используются, в частности, для ускорения обнаружения и идентификации бактерий, относящихся к большому числу широко распространенных видов энтеробактерий и псевдомонад (среды Сиволодского).

Специальные - среды, специально приготовленные для получения роста тех бактерий, которые не растут или очень плохо растут на универсальных средах. К ним относятся среды Мак-Коя-Чепина (для получения роста возбудителя туляремии), кровяной МПА (для получения роста патогенных стрептококков), среда Левенштейна-Иенсена (для выделения возбудителя туберкулеза) и др.

Синтетические - среды строго определенного химического состава, представляющие собой растворы неорганических солей с добавлением химических соединений, которые служат источником углерода или азота. Примером такой синтетической среды является минимальная среда М-9, в которой источником энергии и углерода является глюкоза, а азота - NH4C1. Синтетические среды могут быть и более сложного состава с включением различных аминокислот, оснований и витаминов.

Полусинтетические - синтетические среды, к которым добавляют какой-либо продукт природного происхождения, например сыворотку крови. Существует много различных вариантов питательных сред, сконструированных с учетом потребностей соответствующих видов бактерий и диагностических целей.

Асинхронный электродвигатель а4 предназначен для привода механизмов, которые не требуют регулировки частоты вращения (вентиляторов, дымососов, насосов). Отличительные особенности двигателей серии А4 и их характеристики вы можете узнать на

Классификация сред

Потребность в питательных веществах и свойствах среды у разных видов микроорганизмов неодинакова. Это исключает возможность создания универсальной среды. Кроме того, на выбор той или иной среды влияют цели исследования.

В настоящее время предложено огромное количество сред, в основу классификации которых положены следующие признаки.

1. Исходные компоненты. По исходным компонентам различают натуральные и синтетические среды. Натуральные среды готовят из продуктов животного и растительного происхождения. В настоящее время разработаны среды, в которых ценные пищевые продукты (мясо и др.) заменены непищевыми: костной и рыбной мукой, кормовыми дрожжами, сгустками крови и др. Несмотря на то, что состав питательных сред из натуральных продуктов очень сложен и меняется в зависимости от исходного сырья, эти среды нашли широкое применение.

Синтетические среды готовят из определенных химически чистых органических и неорганических соединений, взятых в точно указанных концентрациях и растворенных в дважды дистиллированной воде. Важное преимущество этих сред в том, что состав их постоянен (известно, сколько и какие вещества в них входят), поэтому эти среды легко воспроизводимы.

2. Консистенция (степень плотности). Среды бывают жидкие, плотные и полужидкие. Плотные и полужидкие среды готовят из жидких веществ, к которым для получения среды нужной консистенции прибавляют обычно агар-агар или желатин.

Агар-агар - полисахарид, получаемый из определенных сортов морских водорослей. Он не является для микроорганизмов питательным веществом и служит только для уплотнения среды. В воде агар плавится при 80- 100°С, застывает при 40-45°С.

Желатин - белок животного происхождения. При 25- 30°С желатиновые среды плавятся, поэтому культуры на них обычно выращивают при комнатной температуре. Плотность этих сред при рН ниже 6,0 и выше 7,0 уменьшается, и они плохо застывают. Некоторые микроорганизмы используют желатин как питательное вещество - при их росте среда разжижается.

Кроме того, в качестве плотных сред применяют свернутую сыворотку крови, свернутые яйца, картофель, среды с селикагелем.

3. Состав. Среды делят на простые и сложные. К первым относят мясопептонный бульон (МПБ), мясопептонный агар (МПА), бульон и агар Хоттингера, питательный желатин и пептонную воду. Сложные среды готовят, прибавляя к простым средам кровь, сыворотку, углеводы и другие вещества, необходимые для размножения того или иного микроорганизма.

4. Назначение: а) основные (общеупотребительные) среды служат для культивирования большинства патогенных микробов. Это вышеупомянутые МП А, МПБ, бульон и агар Хоттингера, пептонная вода; б) специальные среды служат для выделения и выращивания микроорганизмов, не растущих на простых средах. Например, для культивирования стрептококка к средам прибавляют сахар, для пневмо- и менингококков - сыворотку крови, для возбудителя коклюша - кровь; в) элективные (избирательные) среды служат для выделения определенного вида микробов, росту которых они благоприятствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Так, соли желчных кислот, подавляя рост кишечной палочки, делают среду элективной для возбудителя брюшного тифа. Среды становятся элективными при добавлении к ним определенных антибиотиков, солей, изменении рН.



Жидкие элективные среды называют средами накопления. Примером такой среды служит пептонная вода с рН 8,0. При таком рН на ней активно размножается холерный вибрион, а другие микроорганизмы не растут; г) дифференциально-диагностические среды позволяют отличить (дифференцировать) один вид микробов от другого по ферментативной активности, например среды Гисса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды; д) консервирующие среды предназначены для первичного посева и транспортировки исследуемого материала; в них предотвращается отмирание патогенных микроорганизмов и подавляется развитие сапрофитов. Пример такой среды - глицериновая смесь, используемая для сбора испражнений при исследованиях, проводимых с целью обнаружения ряда кишечных бактерий.

Состав и назначение: мпа, мпб,кровяного агара, сред эндо,левина и плоскирева



Среда Эндо. Состав – МПА + лактоза + индикатор фуксин, обесцвеченный сульфитом натрия. Среда имеет слаборозовый цвет. Используется для дифференциации бактерий, разлагающих лактозу (лактозопозитивные, например кишечная палочка) от бактерий неспособных разлагать лактозу (лактозонегативные, например сальмонеллы, шигеллы). Колонии лактозопозитивных бактерий имеют малиновый цветя, а лактозонегативных – бесцветные.

Среды Гисса (пестрый ряд). Готовится на основе пептонной воды, к которой добавляют химически чистые моно- ди- полисахариды и многоатомные спирты, индикатор и стеклянный поплавок в виде перевернутой маленькой пробирки, для улавливания газообразных продуктов. В состав сред Гисса входит МПБ для определения индола и сероводорода (продукты разложения белков).

Мясопептонный агар (МПА). К готовому бульону (до стерилизации или после нее) добавляют 2-3% измельченного агар-агара и кипятят, помешивая, на слабом огне до; полного расплавления агара. МПА можно варить в автоклаве или аппарате Коха. Готовую среду, если нужно, осветляют, фильтруют и стерилизуют 20 мин при 120°С. Полужидкий агар содержит 0,4-0,5% агар-агара.

Мясопептонный бульон (МПБ). К мясной воде прибавляют 1% пептона и 0,5% х. ч. натрия хлорида, кипятят на слабом огне 10-15 мин для растворения веществ, устанавливают нужный рН и снова кипятят 30-40 мин до выпадения осадка. Фильтруют, доливают до первоначального объема водой и стерилизуют 20 мин при 120°С.

Среда Эндо - среда синтетическая, твердая, элективная. Имеет следующий состав, г: пептон – 10, лактоза – 10, K 2 HPO 4 – 3,5, NaHSO 3 – 2,5, агар-агар – 15,0, вода дистиллированная – 1000 мл. К среде добавляют 4 мл 10 %-ного спиртового раствора основного фуксина, поэтому она окрашивается в розово-кремовый цвет. Среду стерилизуют в автоклаве и сохраняют в темноте. Используют для выращивания кишечной палочки. Бактерии из рода Escherichia на этой среде образуют малиновые колонии с металлическим блеском.

Кровяной агар. Размешать 21,25 г порошка М834 или 19,75 г порошка М834А в 500 мл дистиллированной воды. Прокипятить для полного растворения частиц. Стерилизовать автоклавированием при 1,1 атм (121°С) в течение 15 мин. Остудить до 40-50°С и асептично внести до 7% стерильную дефибринированную кровь.

Для культивирования бруцелл : добавить в 500 мл расплавленной стерильной основы растворенное в воде содержимое 1 пузырька с селективной добавкой для бруцелл (FD155).

Для культивирования кампилобактеров : добавить в 500 мл расплавленной стерильной основы растворенное в воде содержимое 1 пузырька с одной из селективных добавок для кампилобактеров (FD006, FD165 или FD008) или 1 пузырька с ростовой добавкой для кампилобактеров (FD009).

Для культивирования стрептококков : добавить в 500 мл расплавленной стерильной основы растворенное в воде содержимое 1 пузырька со стрептококковой добавкой (FD031).

Тщательно перемешать и разлить среду в стерильные чашки Петри.

Левина Основная среда: 1) пептон бактериологический - 10 г; 2) агар-агар - 15 г; 3) калий фосфорнокислый двузамещенный (К2НРO4) - 2 в; 4) вода дистиллированная - 1 л. Разливают по 100 мл и стерилизуют при 120° в течение 15-30 мин.
Дифференциальная среда: на каждые 100 мл расплавленной основной среды добавляют при помешивании следующие растворы, приготовленные на дистиллированной воде и простерилизованные дробно текучим паром три дня подряд. Ингредиенты: 1) 20% раствор лактозы- 5 мл; 2) 2% раствор эозина бактериологического - 2 мл; 3) 0,5% раствор метиленового синего - 1,5 мл. Среду разливают в чашки Петри, подсушивает. Готовая среда имеет сине-фиолетовый цвет. При отсутствии пептона среду можно готовить на основе перевара Хоттингера (рН=7,2-7,3). Широкое применение нашла сухая среда Левина, выпускаемая промышленностью.

Плоскирева . В состав среды Плоскирева входят ингибирующие вещества (желчные соли, бриллиантовый зеленый, йод), вследствие чего она должна полностью подавлять рост грамположительной флоры, значительно задерживать (первые 24 ч) рост эшерихий и другой сопутствующей микрофлоры, подавлять роение протея.

Дифференцирующие свойства агара Плоскирева основаны на изменении рН в кислую сторону при росте лактозоферментирующих бактерий, которые образуют колонии брусничного цвета (индикатор нейтральный красный)

Выделение чистой культуры аэробных бактерий. Основные этапы выделения чистой культуры. Работа 1-ого, 2-ого и 3-его дня по выделению чистой культуры. Методы изучения сахаролитических свойств бактерий. Состав и назначение сред Гисса.

Чистая культура микроорганизмов – это популяция клеток (видимый рост) одного вида , выросшая на стерильной питательной среде.

Выделение чистой культуры бактериологический метод . Этот метод является основным методом диагностики бактериальных инфекций.

Для получения чистой культуры необходимо отделить бактериальные клетки разных видов друг от друга . Чаще всего используются механические способы отделения клеток специальные методы посева :

а) посев шпателем по Дригальскому в три чашки Петри; на третьей чашке вырастают отдельные колонии; каждая колония – один вид, т.к. колония – потомство одной клетки;

б) посев петлей "штрихами" или "сеткой": делают посев прерывистыми штрихами; в том месте, где на агар попало большое количество микробных клеток, рост будет в виде сплошного штриха, а на штрихах с небольшим количеством клеток вырастут отдельные колонии;

Таким образом, при помощи специальных методов посева получают изолированные колонии разных видов бактерий.

Выделение чистой культуры проводят в три этапа:

Первый этап (1-ый день):

а) из материала (смесь бактерий разных видов) готовят мазок , окрашивают по Граму и микроскопируют;

б) делают посев материала (смеси бактерий) на чашку Петри с МПА штриховым методом или по методу Дригальского и ставят в термостат при 37°С на 24-48 часов.

Второй этап (2-ой день):

а) наблюдают посевы и проводят описание колоний разных видов (размер, форма, цвет, поверхность, форма края, структура, консистенция);

б) из колоний готовят мазки и окрашивают по Граму (колония должна содержать один вид бактерий);

в) делают пересев разных колоний в разные пробирки со скошенным МПА для накопления чистой культуры; выращивают в термостате при 37°С 24 часа.

Третий этап (3-ий день): проделывают работу по идентификации (определение вида) культуры и проверяют чистоту культуры. Для определения вида изучают морфологические, культуральные, тинкториальные и биохимические свойства:

а) отмечают характер роста выделенной чистой культуры на МПА (визуально она характеризуется однородным ростом);

б) готовят мазок , окрашивают по Граму и микроскопируют; если культура чистая, то обнаруживают одинаковые морфологические и тинкториальные клетки;

в) делают посев на среды Гисса и МПБ для изучения сахаролитических и протеолитических свойств чистой культуры; оставляют в термостате при 37° С на 24 часа.

По совокупности морфологических, тинкториальных, культуральных и биохимических свойств делают вывод о видовой принадлежности выделенной чистой культуры бактерий. При необходимости изучают и другие признаки (факторы вирулентности, антигенную структуру, чувствительность к фагам и др.).

В бактериологической практике установление вида возбудителя позволяет поставить диагноз заболевания, поэтому выделение и идентификация чистой культуры - это и естьбактериологический метод диагностики инфекционных заболеваний . Постановка этого метода обязательно включает и определение чувствительности выделенной чистой культуры возбудителя к антибиотикам (определение антибиотикограммы).

Изучение сахаролитических свойств.

Для определения сахаролитических свойств используются среды: плотные среды Эндо, Левина и Плоскирева, а такжежидкие и полужидкие среды Гисса.

Среды Эндо, Левина, Плоскирева содержат лактоз у и определенный индикатор .

Эти среды позволяют отличить патогенные бактерии от кишечной палочки - E. coli. E. coli способна расщеплять лактозу, т.к. имеет фермент галактозидазу . При расщеплении лактозы образуются кислые продукты, которые изменяют цвет индикатора. Поэтому E. coli образует на средах окрашенные колонии: на среде Эндо - красные колонии с металлическим блеском; на среде Левина – темно-синие колонии; на среде Плоскирева – красные колонии. Сальмонеллы и шигеллы не имеют фермента галактозидазу, они не расщепляют лактозу, и цвет среды не изменяется. Поэтому сальмонеллы и шигеллы образуют на средах Эндо, Левина и Плоскирева бесцветные колонии.

Таким образом, на одной и той же среде наблюдается различный характер роста разных видов бактерий, т.к. они имеют различные ферменты. Это позволяет отличить один вид от другого.

Среды Гисса содержат лактозу, глюкозу, мальтозу, сахарозу и маннит и различные индикаторы. Если бактерии расщепляют углевод до образования кислых продуктов, наблюдается изменение цвета среды, а если до кислоты и газа – наблюдают появление газообразных продуктов.

Жидкие среды Гисса состоят из пептонной воды, 1 % углевода и индикатора Андреде (кислый фуксин, обесцвеченный щелочью). В среду опускается поплавок, который при стерилизации заполняется средой. Исходный цвет среды – соломенно-желтый. При расщеплении углевода цвет среды становится ярко-розовым (красным). Если образуется газ, он накапливается в поплавке. Если углевод не расщепляется, цвет среды не изменяется.

Полужидкие среды Гисса состоят из 0,2-0,5 % мясопептонного агара (МПА), 1 % углевода и индикатора ВР (водно-голубая краска и розоловая кислота). Исходный цвет среды - розовато-серый. При расщеплении углевода цвет среды становится голубым, а если образуется газ, наблюдаются разрывы в среде.

Определенный вид бактерий ферментирует не все, а только некоторые углеводы, поэтому в одних пробирках цвет изменяется, а в других – не изменяется, и получается "пестрый ряд". Каждый вид бактерий характеризуется своим "пестрым рядом".