Решение алгебраических уравнений. Методы решения алгебраических уравнений

ТИПЫ УРАВНЕНИЙ

Алгебраические уравнения. Уравнения вида f n = 0, где f n – многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида

f n = a 0 x i y j ... v k + a 1 x l y m ... v n + ¼ + a s x p y q ... v r ,

где x , y , ..., v – переменные, а i , j , ..., r – показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так:

f (x ) = a 0 x n + a 1 x n – 1 + ... + a n – 1 x + a n

или, в частном случае, 3x 4 – x 3 + 2x 2 + 4x – 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f (x ) = 0. Если a 0 ¹ 0, то n называется степенью уравнения. Например, 2x + 3 = 0 – уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени – кубическими. Аналогичные названия имеют и уравнения более высоких степеней.

Трансцендентные уравнения. Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

где lg – логарифм по основанию 10.

Дифференциальные уравнения. Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.

Интегральные уравнения. Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s ) = òK (s, t ) f (t ) dt , где f (s ) и K (s ,t ) заданы, а f (t ) требуется найти.

Диофантовы уравнения. Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3x – 5y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5n , y = 4 + 3n .

РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.

Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом.


1. Если равные величины увеличить на одно и то же число, то результаты будут равны.

2. Если из равных величин вычесть одно и то же число, то результаты будут равны.

3. Если равные величины умножить на одно и то же число, то результаты будут равны.

4. Если равные величины разделить на одно и то же число, то результаты будут равны.

Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.

Квадратные уравнения. Решения общего квадратного уравнения ax 2 + bx + c = 0 можно получить с помощью формулы

Таким образом, существуют два решения, которые в частном случае могут совпадать.

Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители.

Например, уравнение x 3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x 2 – x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю:

Таким образом, корни равны x = –1, , т.е. всего 3 корня.

Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твердая уверенность в том, что решение существует: алгебраическое уравнение n -й степени имеет ровно n корней.

Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде

Решение такой системы находится с помощью определителей

Оно имеет смысл, если Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей и отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации – система

(2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное число решений.

Общая теория рассматривает m линейных уравнений с n переменными:

Если m = n и матрица (a ij ) невырожденна, то решение единственно и может быть найдено по правилу Крамера:

где A ji – алгебраическое дополнение элемента a ij в матрице (a ij ). В более общем плане существуют следующие теоремы. Пусть r – ранг матрицы (a ij ), s – ранг окаймленной матрицы (a ij ; b i ), которая получается из a ij присоединением столбца из чисел b i . Тогда: (1) если r = s , то существует n – r линейно независимых решений; (2) если r < s , то уравнения несовместны и решений не существует.

Алгебраические уравнения – уравнения вида

где - многочлен от переменных . Эти переменные называют неизвестными. Упорядоченный набор чисел удовлетворяет этому уравнению, если при замене на , на и т.д. получается верное числовое равенство (например, упорядоченная тройка чисел (3, 4, 5) удовлетворяет уравнению , поскольку ). Число, удовлетворяющее алгебраическому уравнению с одним неизвестным, называют корнем этого уравнения. Множество всех наборов чисел, удовлетворяющих данному уравнению, есть множество решений этого уравнения. Два алгебраических уравнения, имеющих одно и то же множество решений, называются равносильными. Степень многочлена называется степенью уравнения . Например, - уравнение первой степени, - второй степени, а - четвертой степени. Уравнения первой степени называют также линейными (см. Линейные уравнения).

Алгебраическое уравнение с одним неизвестным имеет конечное число корней, а множество решений алгебраического уравнения с большим числом неизвестных может представлять собой бесконечное множество определенных наборов чисел. Поэтому обычно рассматривают не отдельные алгебраические уравнения с неизвестными, а системы уравнений и ищут наборы чисел, одновременно удовлетворяющие всем уравнениям данной системы. Совокупность всех этих наборов образует множество решений системы. Например, множество решений системы уравнений , таково: .

НИЛЬС ГЕНРИХ АБЕЛЬ
(1802-1829)

В Королевском парке в Осло стоит скульптура сказочного юноши, попирающего двух поверженных чудовищ: по цоколю идет надпись "ABEL".

Что же символизируют чудовища? Первое из них, несомненно – алгебраические уравнения 5-й степени. Еще в последних классах школы Абелю показалось, что он нашел формулу для их решения, подобную тем, которые существуют для уравнений степени, не превышающей четырех. Никто в провинциальной Норвегии не смог проверить доказательство. Абель сам нашел у себя ошибку, он уже знал, что не существует выражения для корней в радикалах. Тогда Абель не знал, что итальянский математик П. Руффини опубликовал доказательство этого утверждения, содержащее, однако, пробелы.

К тому времени Абель был уже студентом университета в Осло (тогда Христиании). Он был совершенно лишен средств к существованию, и первое время стипендию ему выплачивали профессора из собственных средств. Затем он получил государственную стипендию, которая позволила ему провести два года за границей. В Норвегии были люди, которые понимали, сколь одарен Абель, но не было таких, кто мог бы понять его работы. Будучи в Германии. Абель так и не решился посетить К. Гаусса.

Во Франции Абель с интересом собирает математические новости, пользуется каждой возможностью увидеть П. Лапласа или А. Лежандра, С. Пуассона или О. Коши, но серьезных научных контактов с великими математиками установить не удалось. Представленный в академию «Мемуар об одном очень общем классе трансцендентных функций» не был рассмотрен, рукопись Абеля была обнаружена через сто лет. (В скульптуре эту работу олицетворяло второе поверженное чудовище.) Речь шла о рассмотрении некоторого класса замечательных функций, получивших название эллиптических и сыгравших принципиальную роль в дальнейшем развитии математического анализа. Абель не знал, что 30 лет назад в этих вопросах далеко продвинулся Гаусс, но ничего не опубликовал.

В 1827 г. Абель возвращается на родину, и там выясняется, что для него нет работы. Он получает временную работу вместо профессора, уехавшего в длительную экспедицию в Сибирь. Долги становятся его вечным уделом, но работоспособность Абеля не уменьшается. Он продолжает развивать теорию эллиптических функций, близок к пониманию того, какие уравнения решаются в радикалах. Неожиданно появляется соперник К. Г. Якоби, который был на два года моложе Абеля. Якоби публикует замечательные результаты в области, которую Абель считал своей собственностью. И Абель работает еще интенсивнее и наконец сообщает: «Я нокаутировал Якоби».

К работам Абеля пришло признание, математики стали проявлять заботу о его судьбе. Французские академики-математики обращаются с посланием к шведскому королю, правившему Норвегией, с просьбой принять участие в судьбе Абеля. Тем временем у Абеля быстро прогрессирует туберкулез, и 6 апреля 1829 г. его не стало.

Алгебраические уравнения 1-й степени с одним неизвестным решали уже в Древнем Египте и Древнем Вавилоне. Вавилонские писцы умели решать и квадратные уравнения, а также простейшие системы линейных уравнений и уравнений 2-й степени. С помощью особых таблиц они решали и некоторые уравнения 3-й степени, например . В Древней Греции квадратные уравнения решали с помощью геометрических построений. Греческий математик Диофант (III в.) разработал методы решения алгебраических уравнений и систем таких уравнений со многими неизвестными в рациональных числах. Например, он решил в рациональных числах уравнение , систему уравнений , и т.д. (см. Диофантовы уравнения).

ЭВАРИСТ ГАЛУА
(1811-1832)

Он прожил двадцать лет, всего пять лет из них занимался математикой. Математические работы, обессмертившие его имя, занимают чуть более 60 страниц.

В 15 лет Галуа открыл для себя математику и с тех пор, по словам одного из преподавателей, «был одержим демоном математики». Юноша отличался страстностью, неукротимым темпераментом, что постоянно приводило его к конфликтам с окружающими, да и с самим собой.

Галуа не задержался на элементарной математике и мгновенно оказался на уровне современной науки. Ему было 17 лет, когда его учитель Ришар констатировал: «Галуа работает только в высших областях математики». Ему было неполных 18 лет, когда была опубликована его первая работа. И в те же годы Галуа два раза подряд не удается сдать экзамены в Политехническую школу, самое престижное учебное заведение того времени. В 1830 г. он был принят в привилегированную Высшую нормальную школу, готовившую преподавателей. За год учебы в этой школе Галуа написал несколько работ; одна из них, посвященная теории чисел, представляла исключительный интерес.

Бурные июльские дни 1830 г. застали Галуа в стенах Нормальной школы. Его все более захватывает новая страсть – политика. Галуа присоединяется к набиравшей силы республиканской партии - Обществу друзей народа, - недовольной политикой Луи-Филиппа. Возникает конфликт с директором школы, всеми силами противодействовавшим росту политических интересов у учащихся, и в январе 1831 г. Галуа исключают из школы. В январе 1831 г. Галуа передал в Парижскую академию наук рукопись своего исследования о решении уравнений в радикалах. Однако академия отвергла работу Галуа – слишком новы были изложенные там идеи. В это время Галуа находился в тюрьме. После освобождения уже в июле он вновь оказывается в тюрьме Сент-Пелажи после попытки организовать манифестацию 14 июля (в годовщину взятия Бастилии), на сей раз Галуа приговорен к 9 месяцам тюрьмы. За месяц до окончания срока заключения заболевшего Галуа переводят в больницу. В тюрьме он встретил свое двадцатилетие.

29 апреля он выходит на свободу, но ему было суждено прожить еще лишь только один месяц. 30 мая он был тяжело ранен на дуэли. На следующий день он умер. В день перед дуэлью Галуа написал своему другу Огюсту Шевалье письмо: «Публично обратись к Якоби или Гауссу с просьбой дать мнение не об истинности, а о значении тех теорем, развернутого доказательства которых я не даю, и тогда, надеюсь, кто-нибудь сочтет полезным разобраться во всей этой путанице». Работы Галуа содержали окончательное решение проблемы о разрешимости алгебраических уравнений в радикалах, то, что сегодня называется теорией Галуа и составляет одну из самых глубоких глав алгебры. Другое направление в его исследованиях связано с так называемыми абелевыми интегралами и сыграло важную роль в математическом анализе XIX в. Работы Галуа были опубликованы лишь в 1846 г. Ж. Лиувиллем, а признание к ним пришло еще позже, когда с 70-х гг. понятие группы постепенно становится одним из основных математических объектов.

Некоторые геометрические задачи: удвоение куба, трисекция угла (см. Классические задачи древности), построение правильного семиугольника – приводят к решению кубических уравнений. По ходу решения требовалось отыскать точки пересечения конических сечений (эллипсов, парабол и гипербол). Пользуясь геометрическими методами, математики средневекового Востока исследовали решения кубических уравнений. Однако им не удалось вывести формулу для их решения. Первым крупным открытием западноевропейской математики была полученная в XVI в. формула для решения кубического уравнения. Поскольку в то время отрицательные числа еще не получили распространения, пришлось отдельно разбирать такие типы уравнений, как , и т. д. Итальянский математик С. дель-Ферро (1465-1526) решил уравнение и сообщил решение своему зятю и ученику А.-М. Фиоре, который вызвал на математический турнир замечательного математика-самоучку Н. Тарталью (1499- 1557). За несколько дней до турнира Тарталья нашел общий метод решения кубических уравнений и победил, быстро решив все предложенные ему 30 задач. Однако найденная Тартальей формула для решения уравнения

Создание алгебраической символики и обобщение понятия числа вплоть до комплексных чисел позволили в XVII-XVIII вв. исследовать общие свойства алгебраических уравнений высших степеней, а также общие свойства многочленов от одного и нескольких переменных.

Одной из самых важных задач теории алгебраических уравнений в XVII-XVIII вв. было отыскание формулы для решения уравнения 5-й степени. После бесплодных поисков многих поколений алгебраистов усилиями французского ученого XVIII в. Ж. Лагранжа (1736-1813), итальянского ученого П. Руффини (1765-1822) и норвежского математика Н. Абеля в конце XVIII – начале XIX в. было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения 5-й степени через коэффициенты уравнения, используя лишь арифметические операции и извлечение корней. Эти исследования были завершены работами Э. Галуа, теория которого позволяет для любого уравнения определить, выражаются ли его корни в радикалах. Еще до этого К.Ф. Гаусс решил проблему выражения в квадратных радикалах корней уравнения , к которому сводится задача о построении с помощью циркуля и линейки правильного -угольника. В частности, невозможно с помощью этих инструментов построить правильный семиугольник, девятиугольник и т.д. – такое построение возможно лишь в случае, когда - простое число вида или произведение различных простых чисел такого вида.

Наряду с поисками формул для решения конкретных уравнений был исследован вопрос о существовании корней у любого алгебраического уравнения. В XVIII в. французский философ и математик Ж. Д"Аламбер доказал, что любое алгебраическое уравнение ненулевой степени с комплексными коэффициентами имеет хотя бы один комплексный корень. В доказательстве Д"Аламбера были пропуски, восполненные потом Гауссом. Из этой теоремы следовало, что любой многочлен -й степени от разлагается в произведение линейных множителей.

В настоящее время теория систем алгебраических уравнений превратилась в самостоятельную область математики, называемую алгебраической геометрией. В ней изучаются линии, поверхности и многообразия высших размерностей, задаваемые системами таких уравнений.

Алгебраические уравнения. Определение

Пусть функции f(x) и ц(x) определены на некотором множестве A. И пусть необходимо найти множество X, на котором эти функции принимают равные значения, другими словами, найти все значения x, для которых выполняется равенство: f(x)= ц(x).

При такой постановке это равенство называется уравнением с неизвестным x.

Уравнение называется алгебраическим, если в нем над неизвестным выполняются только алгебраические операции - сложение, вычитание, умножение, деление, возведение в степень и извлечение корня с натуральным показателем .

Алгебраические уравнения содержат только алгебраические функции (целые, рациональные, иррациональные). Алгебраическое уравнение в общем виде можно представить многочленом n-ой степени с действительными коэффициентами:

Например,

Множество A называется множеством (областью) допустимых значений неизвестного для данного уравнения.

Множество X называется множеством решений, а всякое его решение x=a - корнем данного уравнения. Решить уравнение - значит найти множество всех его решений или доказать, что их нет.

Методы решения алгебраических уравнений

Во многих научных и инженерных задачах требуется решить уравнение вида

где f (x) - заданная непрерывная нелинейная функция.

Аналитически удается найти решение только для простейших уравнений. В большинстве же случаев приходится решать уравнение вида (1) численными методами.

Численное решение уравнения (1) обычно проводится в два этапа. На первом этапе нужно найти такие интервалы изменения переменной x, где расположен только один корень. Эта задача обычно решается графически. На втором этапе проводится уточнение отдельных корней. Для этого используются различные методы.

Методы решения нелинейных уравнений делятся на прямые и итерационные. Прямые методы позволяют записать корни в виде формулы. Однако встречающиеся на практике уравнения не всегда удаётся решить простыми методами. Для их решения используются итерационные методы, т.е. методы последовательных приближений.

Прямые методы - решение находится за ранее известное число арифметических действий, решение строгое. Примеры: метод Гаусса, метод квадратного корня, правило Крамера и т. д.

Итерационные методы - это методы последовательных приближений, в которых нельзя предсказать число арифметических действий, которое потребуется для решения уравнения (системы) с заданной точностью . Примеры: метод простых итераций, метод Гаусса-Зейделя, метод деления отрезка пополам и т.д.

В данной работе изучаются и сравниваются метод простых итераций и метод половинного деления отрезка.

Для учащихся, интересующихся математикой, при решении алгебраических уравнений высших степеней эффективным методом быстрого нахождения корней, деление с остатком на двучлен х – a или на ах + b, является схема Горнера.

Рассмотрим схему Горнера.

Обозначим неполное частное при делении Р(х) на х – a через

Q(x) = b 0 x n-1 + b 1 x n-2 + … + b n-1 , а остаток через b n .

Так как Р(х) = Q(x)(х–) + b n , то имеет место равенство

а 0 x n + а 1 x n-1 + … + а n = (b 0 x n-1 + b 1 x n-2 + … + b n-1)(х–a) + b n

Раскроем в правой части скобки и сравним коэффициенты при одинаковых степенях х слева и справа. Получим, что а 0 = b 0 и при 1 < k < n имеют место соотношения а k = b k - a b k-1 . Отсюда следует, что b 0 = а 0 и b k = а k + a b k-1 , 1 < k < n.

Вычисление коэффициентов многочлена Q(x) и остатка b n запишем в виде таблицы:

b 1 =а 1 + b 0

b 2 =а 2 + b 1

b n-1 =а n-1 + b n-2

b n = а n + b n-1

Пример 1. Разделить многочлен 2x 4 – 7x 3 – 3х 2 + 5x – 1 на х + 1.

Решение. Используем схему Горнера.

При делении 2x 4 – 7x 3 – 3х 2 + 5x – 1 на х + 1 получим 2x 3 – 9х 2 + 6x – 1

Ответ: 2x 3 – 9х 2 + 6x – 1

Пример 2. Вычислить Р(3), где Р(х) = 4x 5 – 7x 4 + 5х 3 – 2х + 1

Решение. Используя теорему Безу и схему Горнера, получим:

Ответ: Р(3) = 535

Упражнение

1) Используя схему Горнера, разделить многочлен

4x 3 – x 5 + 132 – 8х 2 на х + 2;

2) Разделить многочлен

2x 2 – 3x 3 – х + х 5 + 1 на х + 1;

3) Найти значение многочлена Р 5 (х) = 2х 5 – 4х 4 – х 2 + 1 при х = 7.

1.1. Отыскание рациональных корней уравнений с целыми коэффициентами

Способ отыскания рациональных корней алгебраического уравнения с целыми коэффициентами дается следующей теоремой.

Теорема: Если уравнение с целыми коэффициентами имеет рациональные корни, то они есть частное от деления делителя свободного члена на делитель старшего коэффициента.

Доказательство: а 0 x n + а 1 x n-1 + … + а n = 0

Пусть х = р/q – рациональный корень, q, p – взаимнопростые.

Подставив дробь р/q в уравнение, и освободившись от знаменателя, получим

а 0 р n + а 1 р n-1 q+ … + а n-1 pq n-1 + a n q n = 0 (1)

Перепишем (1) двумя способами:

a n q n = р(– а 0 р n-1 – а 1 р n-2 q – … – а n-1 q n-1) (2)

а 0 р n = q (– а 1 р n-1 –… – а n-1 рq n-2 – а n q n-1) (3)

Из равенства (2) следует, что a n q n делится на р, и т.к. q n и р взаимно просты, то a n делится на р. Аналогично из равенства (3) следует, что а 0 делится на q. Теорема доказана.

Пример 1. Решить уравнение 2x 3 – 7x 2 + 5х – 1 = 0.

Решение. Целых корней уравнение не имеет, находим рациональные корни уравнения. Пусть p/q несократимая дробь является корнем уравнения, тогда р находим среди делителей свободного члена, т.е. среди чисел ± 1, а q среди положительных делителей старшего коэффициента: 1; 2.

Т.е. рациональные корни уравнения надо искать среди чисел ± 1, ± 1/2, обозначим Р 3 (х) = 2x 3 – 7x 2 + 5х – 1, Р 3 (1) 0, Р 3 (–1) 0,

Р 3 (1/2) = 2/8 – 7/4 + 5/2 – 1 = 0, 1/2 – корень уравнения.

2x 3 – 7x 2 + 5х – 1 = 2x 3 – x 2 – 6 x 2 + 3х + 2х– 1 = 0.

Получим: x 2 (2х – 1) – 3x(2х – 1)+ (2х– 1) = 0; (2х– 1)(x 2 – 3x + 1) = 0.

Приравнивая второй множитель к нулю, и решив уравнение, получим

Упражнения

Решить уравнения:

  1. 6x 3 – 25x 2 + 3х + 4 = 0;
  2. 6x 4 – 7x 3 – 6х 2 + 2х + 1 = 0;
  3. 3x 4 – 8x 3 – 2х 2 + 7х – 1 = 0;

1.2. Возвратные уравнения и методы решения

Определение. Уравнение с целыми степенями относительно неизвестного называется возвратным, если его коэффициенты, равноотстоящие от концов левой части, равны между собой, т.е. уравнение вида

аx n + bx n-1 + cx n-2 + … + cx 2 + bx + а = 0

Возвратное уравнение нечетной степени

аx 2n+1 + bx 2n + cx 2n-1 + … + cx 2 + bx + а = 0

всегда имеет корень х = – 1. Поэтому оно эквивалентно объединению уравнению х + 1 = 0 и . Последнее уравнение является возвратным уравнением четной степени. Таким образом, решение возвратных уравнений любой степени сводится к решению возвратного уравнения четной степени.

Как же его решать? Пусть дано возвратное уравнение четной степени

аx 2n + bx 2n-1 + … + dx n+1 + ex n + dx n-1 + … + bx + а = 0

Заметим, что х = 0 не является корнем уравнения. Тогда делим уравнение на х n , получим

аx n + bx n-1 + … + dx + e + dx -1 + … + bx 1-n + аx -n = 0

Группируем попарно члены левой части

а(x n + x -n) + b(x n-1 + x -(n-1) + … + d(x + x -1) + e = 0

Делаем замену х + х -1 = у. После подстановки выражений х 2 + х -2 = у 2 – 2;

х 3 + х -3 = у 3 – 3у; х 4 + х -4 = у 4 – 4у + 2 в уравнение получим уравнение относительно у Ау n + By n-1 +Cy n-2 + … + Ey + D = 0.

Для решения этого уравнения нужно решить несколько квадратных уравнений вида х + х -1 = у k , где к = 1, 2, … n. Таким образом, получим корни исходного уравнения.

Пример 1. Решить уравнение х 7 + х 6 – 5х 5 – 13х 4 – 13х 3 – 5х 2 + 2х + 1 = 0.

Решение. х = – 1 является корнем уравнения. Применим схему Горнера.

Наше уравнение примет вид:

(х + 1)(х 6 + х 5 – 6х 4 – 7х 3 – 6х 2 + х + 1) = 0

1) х + 1 = 0, х = -1;

2) х 6 + х 5 – 6х 4 – 7х 3 – 6х 2 + х + 1 = 0 | : x 3 ? 0; х 3 + х 2 – 6х – 7 – 6/х + 1/х 2 + 1/х 3 =0.

Группируя, получим: .

Вводим замену: ; ; .

Получим относительно у уравнение: у 3 – 3у + у 2 – 2 – 6у – 7 = 0;

у 3 + у 2 – 9у– 9 = 0; у 2 (у + 1) – 9(у + 1) = 0; (у + 1)(у 2 – 9); у 1 = -1, у 2,3 = ± 3.

Решая уравнения , , ,

получим корни: , , ,

Ответ: х 1 = -1, ,

Упражнения

Решить уравнения.

  1. 2х 5 + 5х 4 – 13х 3 – 13х 2 + 5х + 2 = 0;
  2. 2х 4 + 3х 3 – 16х 2 + 3х + 2 = 0;
  3. 15х 5 + 34х 4 + 15х 3 – 15х 2 – 34х – 15 = 0.

1.3. Метод замены переменной при решении уравнений

Метод замены переменной - самый распространенный метод. Искусство производить замену переменной заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху.

Если дано уравнение

F(f(x)) = 0, (1)

то заменой неизвестной у = f(x) оно сначала сводится к уравнению

а потом после нахождения всех решений уравнения (2) у 1 , у 2 , …, y n , … сводится к решению совокупности уравнений f(x) =у 1, f(x) = у 2 ,…, f(x) = у 2 , …

Основными способами реализации метода замены переменной являются:

  • использование основного свойства дроби;
  • выделение квадрата двучлена;
  • переход к системе уравнений;
  • раскрытие скобок парами;
  • раскрытие скобок парами и деление обеих частей уравнения;
  • понижение степени уравнения;
  • двойная замена.

1.3.1. Понижение степени уравнения

Решить уравнение (х 2 + х + 2)(х 2 + х + 3) = 6 (3)

Решение. Обозначим х 2 + х + 2 = у, тогда полечим у(у+1)=6, решая последнее, получим у 1 = 2, у 2 = -3. Данное уравнение (3) равносильно совокупности уравнений х 2 + х + 2 = 2

х 2 + х + 2 = -3

Решая первое, получим х 1 = 0, х 2 = -1. Решая второе, получим ,

Ответ: х 1 = 0, х 2 = -1,

1.3.2. Уравнение четвертой степени вида (х + а)(х + b)(x + c)(x + d) = m, где а + b = c + d, или а + с = b + d, или а + d = b + c.

Пример. Решить уравнение (х - 1)(х - 7)(x -4)(x + 2) = 40

Решение. – 1- 4 = - 7 + 2, - 5 = - 5, перемножив эти пары скобок, получим уравнение (х 2 - 5х - 14)(х 2 - 5х + 4) = 40

Введем замену: х 2 - 5х – 14 = у, получим уравнение у(у + 18) = 40, у 2 + 18у = 40, у 2 + 18у – 40 = 0. у 1 = -20, у 2 = 2. Возвращаясь к исходной переменной, решим совокупность уравнений:

1.3.3. Уравнение вида (х + а)(х + b)(x + c)(x + d) = Ех 2 ,

где ab = cd, или ac =bd, или ad = bc. Раскрываем скобки парами и делим обе части на х 2 0.

Пример. (х - 1)(х - 2)(x - 8)(x - 4) = 4х 2

Решение. Произведение чисел, стоящих в первой и третьей, во второй и четвертой скобках, равны, т.е. – 8 (- 1) = (- 2)(- 4). Перемножим указанные пары скобок и запишем уравнение (х 2 - 9х + 8)(х 2 - 6х + 8) = 4х 2 .

Поскольку х = 0 не является корнем уравнения, разделим обе части уравнения на х 2 0, получим: , замена: , исходное уравнение примет вид: t(t+3) =4, t 2 + 3t=4, t 2 + 3t – 4=0, t 1 =1, t 2 = - 4.

Вернемся к исходной переменной:

Первое уравнение решаем, получим х 1,2 = 5 ±

Второе уравнение не имеет корней.

Ответ: х 1,2 = 5 ±

1.3.4. Уравнение четвертой вида (ах 2 + b 1 х + c)(aх 2 + b 2 x + c) = Aх 2

Уравнение (ах 2 + b 1 х+ c)(aх 2 + b 2 x + c) = Aх 2 , где с 0, А 0, не имеет корня х = 0, поэтому, разделив уравнение на х 2 , получим равносильное ему уравнение , которое после замены неизвестной перепишется в виде квадратного и легко решается.

, ДВГГУ,

, Математический лицей

Алгебраические уравнения и методы их решения

П.1 Многочлен и его корни

Рассмотрим набор из (n+1) действительных чисел , многочленом (полиномом) степени n с указанными выше коэффициентами называют выражение вида:

https://pandia.ru/text/78/119/images/image003_38.gif" width="257" height="25 src="> (2)

называют алгебраическим уравнением степени n .

Корни уравнения (2) также называют корнями многочлена.

Приведем несколько фактов, относящихся к корням многочленов.

Факт 1. Любой многочлен нечетной степени имеет хотя бы один действительный корень.

Замечание. Даже зная, что уравнение имеет корень, найти этот корень бывает весьма непросто.

Пример 1. Уравнение очевидно имеет корни 0 и p.

Пример 2. Установить корни уравнения , которые, безусловно, имеются, довольно сложная задача.

Факт 2. Если коэффициенты многочлена являются целыми числами, то рациональные корни этого уравнения (если они есть) имеют вид , где числа k и m – натуральные, причем k – делитель свободного члена , m – делитель главного коэффициента .

Пример 3. https://pandia.ru/text/78/119/images/image010_16.gif" width="348" height="41 src="> (повторяющиеся числа сокращены).

Проверка показывает, что подходят числа 2, и .

Задача по отделению рациональных корней значительно упрощается, если старший коэффициент в многочлене равен единице. В этом случае возможные рациональные корни уравнения могут быть только целыми числами, на которые делится свободный член полинома.

Пример 4. У многочлена возможны следующие целые корни: . Проверяя возможные корни (это можно довольно быстро делать с помощью Схемы Горнера ) убеждаемся, что единственный целый корень уравнения равен 2.

Факт 3. Если число - корень многочлена , то этот многочлен можно представить в виде произведения https://pandia.ru/text/78/119/images/image018_6.gif" width="48" height="24"> можно, например, применяя метод деления «уголком», очень похожий на тот, который применяют к обычным числам.

Приведем пример.

Пример 5. Поделим на :

https://pandia.ru/text/78/119/images/image021_6.gif" width="177" height="25">. Заметим, что первый множитель имеет отрицательный дискриминант, поэтому он (и исходный полином) больше корней не имеет.

Факт 4. Любой многочлен с действительными коэффициентами можно представить в виде:

https://pandia.ru/text/78/119/images/image023_6.gif" width="16 height=24" height="24"> - кратность корня , - квадратные трехчлены, не имеющие действительных корней (их называют неприводимыми).

Замечание. При решении уравнений и неравенств можно сокращать на неприводимые трехчлены.

П.2. Группировка как способ нахождения корней полинома

К сожалению, (и это доказано), не существует универсального алгоритма, позволяющего (на подобие квадратного трехчлена) находить корни любого полинома. Существуют специальные формулы для решения уравнений третьей и четвертой степени, однако они трудоемки и в школьном курсе не изучаются. Поэтому часто используются другие методы, такие как отделение корней (рассмотрен в первом пункте), метод группировки и его частный случай – выделение полных квадратов.

Суть метода группировки в следующем: члены многочлена разбивают на группы (отсюда и название) так, что после приведения подобных каждая группа разложится на множители, причем один из множителей будет содержаться в каждой группе. Этот общий множитель выносится за скобки и исходный многочлен раскладывается в произведение двух многочленов более низкой степени.

Рассмотрим пример.

Пример 6. Разложить на множители методом группировки многочлен

https://pandia.ru/text/78/119/images/image027_3.gif" width="272" height="24 src=">

(https://pandia.ru/text/78/119/images/image029_3.gif" width="64" height="21">, первое слагаемое включим в первую группу, второе слагаемое – в третью).

https://pandia.ru/text/78/119/images/image031_4.gif" width="51" height="24">, находим разложение:

.

Оба квадратных трехчлена имеют отрицательные дискриминанты, поэтому дальнейшее их разложение невозможно.

Пример 7. Разложить на множители полином:

https://pandia.ru/text/78/119/images/image034_3.gif" width="35" height="21"> нужно оделить часть, кратную 14: это, например, 70-1, 84-15, 98-29 или 42+27. Первый вариант приводит в тупик. Рассмотрим второй вариант. Получим:

https://pandia.ru/text/78/119/images/image036_2.gif" width="603" height="24">.

Таким образом,

П.3. Примеры решения простейших алгебраических уравнений

Многочлены являются простейшими алгебраическими уравнениями. В этом пункте мы рассмотрим некоторые примеры решения таких уравнений.

Пример 8. Найти корни уравнения

https://pandia.ru/text/78/119/images/image041_2.gif" width="89" height="19 src=">.

Начнем с самого маленького числа – тройки.

https://pandia.ru/text/78/119/images/image043_2.gif" width="40 height=23" height="23"> - один из корней уравнения. Чтобы найти остальные корни, разделим левую часть уравнения на :

https://pandia.ru/text/78/119/images/image046_2.gif" width="107" height="21">. Применяя, например, формулы Виета, получаем два других корня: .

Ответ: https://pandia.ru/text/78/119/images/image049_2.gif" width="124" height="21 src=">.

Решение. Задачу можно свести к биквадратному уравнению, но мы попробуем использовать разложение на множители..gif" width="616" height="24 src=">.

Корни первого сомножителя: https://pandia.ru/text/78/119/images/image052_2.gif" width="63" height="41 src=">.

Далее рассмотрим пример уравнения, которое сводится к рациональному. Особенность таких уравнений – обязательное требование проверки найденных корней области допустимых значений. Например, на ЕГЭ несколько лет назад предлагалась «простая» задача.

Пример 10. Решить уравнение

DIV_ADBLOCK37">

П. 4. Дробные алгебраические уравнения

Простейшее дробное алгебраическое выражение имеет вид:

https://pandia.ru/text/78/119/images/image055_2.gif" width="40" height="23 src=">.gif" width="111" height="41 src=">.

Решение: приведем дроби к общему знаменателю:

https://pandia.ru/text/78/119/images/image059_2.gif" width="207" height="41">.

Оба корня числителя не являются корнями знаменателя (убедитесь в этом, непосредственно подставив оба корня в знаменатель), поэтому они являются решениями рассмотренного уравнения.

Если дробно-рациональное уравнение содержит много элементарных выражений, то, после преобразований, в числителе может образоваться довольно громоздкое выражение, отыскание корней которого будет весьма затруднительным. Но в некоторых случаях бывает возможно свести сложное уравнение к более простому, используя, например, замену переменных. Рассмотрим пример.

Пример 12. Решить уравнение

https://pandia.ru/text/78/119/images/image061_0.gif" width="81" height="41"> являются взаимно-обратными (их произведение равно единице). Введем следующую замену: . Исходное уравнение примет вид:

https://pandia.ru/text/78/119/images/image064_0.gif" height="16">, получим квадратное уравнение:

https://pandia.ru/text/78/119/images/image066_0.gif" width="93" height="23">. Выполним обратную замену. Получим и решим совокупность двух уравнений: 2. Индекс, адрес места жительства, электронная почта (если есть), телефон (домашний или мобильный)

3. Данные о школе (например: МБОУ №1 п. Бикин )

4. Фамилия, И. О. учителя математики (например: учитель математики )

М 10.2.1. Решите уравнение, разложив многочлен на множители:

М 10.2.2. Решите дробно-рациональное уравнение

а) https://pandia.ru/text/78/119/images/image082_0.gif" width="209" height="21 src=">. (Указание: перемножьте сначала первый множитель с четвертым и второй с третьим. Первое произведение обозначьте y , второе произведение тогда представится как y +2. Решите получившееся квадратное уравнение и сделайте обратную замену .)

в) https://pandia.ru/text/78/119/images/image084_0.gif" width="165" height="41 src=">. (Указание: попробуйте прибавить к первым двум слагаемым некоторое число так, чтобы сумма оказалась дробью, обратной той, что стоит на третьем месте с множителем -10. Далее смотрите примеры 12 и 13 .)