Как сложить числа под корнем. Правило сложения квадратных корней

В наше время современных электронных вычислительных машин вычисление корня из числа не представляется сложной задачей. Например, √2704=52, это вам подсчитает любой калькулятор. К счастью, калькулятор есть не только в Windows, но и в обычном, даже самом простеньком, телефоне. Правда если вдруг (с малой долей вероятности, вычисление которой, между прочим, включает в себя сложение корней) вы окажитесь без доступных средств, то, увы, придется рассчитывать только на свои мозги.

Тренировка ума никогда не помещает. Особенно для тех, кто не так часто работает с цифрами, а уж тем более с корнями. Сложение и вычитание корней - хорошая разминка для скучающего ума. А еще я покажу поэтапно сложение корней. Примеры выражений могут быть следующие.

Уравнение, которое нужно упростить:

√2+3√48-4×√27+√128

Это иррациональное выражение. Для того чтобы его упростить нужно привести все подкоренные выражения к общему виду. Делаем поэтапно:

Первое число упростить уже нельзя. Переходим ко второму слагаемому.

3√48 раскладываем 48 на множители: 48=2×24 или 48=3×16. из 24 не является целочисленным, т.е. имеет дробный остаток. Так как нам нужно точное значение, то приблизительные корни нам не подходят. Квадратный корень из 16 равен 4, выноси его из-под Получаем: 3×4×√3=12×√3

Следующее выражение у нас является отрицательным, т.е. написано со знаком минус -4×√(27.) Раскладываем 27 на множители. Получаем 27=3×9. Мы не используем дробные множители, потому что из дробей вычислять квадратный корень сложнее. Выносим 9 из-под знака, т.е. вычисляем квадратный корень. Получаем следующее выражение: -4×3×√3 = -12×√3

Следующее слагаемое √128 вычисляем часть, которую можно вынести из-под корня. 128=64×2, где √64=8. Если вам будет легче можно представить это выражение так: √128=√(8^2×2)

Переписываем выражение с упрощенными слагаемыми:

√2+12×√3-12×√3+8×√2

Теперь складываем числа одним и тем же подкоренным выражением. Нельзя складывать или вычитать выражения с разными подкоренными выражениями. Сложение корней требует соблюдение этого правила.

Ответ получаем следующий:

√2+12√3-12√3+8√2=9√2

√2=1×√2 - надеюсь, то, что в алгебре принято опускать подобные элементы, не станет для вас новостью.

Выражения могут быть представлены не только квадратным корнем, но так же и с кубическим или корнем n-ной степени.

Сложение и вычитание корней с разными показателями степени, но с равнозначным подкоренным выражением, происходит следующим образом:

Если мы имеем выражение вида √a+∛b+∜b, то мы можем упростить это выражение так:

∛b+∜b=12×√b4 +12×√b3

12√b4 +12×√b3=12×√b4 + b3

Мы привели два подобных члена к общему показателю корня. Здесь использовалось свойство корней, которое гласит: если число степени подкоренного выражения и число показателя корня умножить на одно и то же число, то его вычисление останется неизменным.

На заметку: показатели степени складываются только при умножении.

Рассмотрим пример, когда в выражении присутствуют дроби.

5√8-4×√(1/4)+√72-4×√2

Будем решать по этапам:

5√8=5*2√2 - мы выносим из-под корня извлекаемую часть.

4√(1/4)=-4 √1/(√4)= - 4 *1/2= - 2

Если в тело корня представлено дробью, то часто этой дроби не измениться, если извлечь квадратный корень из делимого и делителя. В итоге мы получили описанное выше равенство.

√72-4√2=√(36×2)- 4√2=2√2

10√2+2√2-2=12√2-2

Вот и получился ответ.

Главное помнить, что из отрицательных чисел не извлекается корень с четным показателем степени. Если четной степени подкоренное выражение является отрицательным, то выражение является нерешаемым.

Сложение корней возможно только при совпадении подкоренных выражений, так как они являются подобными слагаемыми. То же самое относиться и к разности.

Сложение корней с разными числовыми показателями степени производиться посредством приведения к общей корневой степени обоих слагаемых. Это закон действует так же как приведение к общему знаменателю при сложении или вычитании дробей.

Если в подкоренном выражении имеется число, возведенное в степень, то это выражение можно упростить при условии, что между показателем корня и степени существует общий знаменатель.

Квадратным корнем из числа X называется число A , которое в процессе умножения самого на себя (A * A ) может дать число X .
Т.е. A * A = A 2 = X , и √X = A .

Над квадратными корнями (√x ), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x - √y ).
А потом привести корни к их простейшей форме - если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя. Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1. Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9 . Первое число 4 является квадратом числа 2 . Второе число 9 является квадратом числа 3 . Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5 .
Все, пример решен. Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54 .

Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3 ,
54 = 2 * 3 * 3 * 3 .

В числе 24 мы имеем множитель 4 , его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9 .

Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6 .

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней - это знаменатель дроби, например, A / (√a + √b) .
Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».
Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a - √b .

Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a - √b) = a - b .

Аналогично, если в знаменателе имеется разность корней: √a - √b , числитель и знаменатель дроби умножаем на выражение √a + √b .

Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 - √5) / ((√3 + √5) * (√3 - √5)) = 4 * (√3 - √5) / (-2) = 2 * (√5 - √3) .

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5) .
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 - √5 .

Получаем:

12 / (√2 + √3 + √5) = 12 * (√2 + √3 - √5) / (2 * √6) = 2 * √3 + 3 * √2 - √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5 .

В итоге получаем:

√7 + √5 ≈ 2,65 + 2,24 = 4,89 .

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

Извлечение квадрантного корня из числа не единственная операция, которую можно производить с этим математическим явлением. Так же как и обычные числа, квадратные корни складывают и вычитают.

Правила сложения и вычитания квадратных корней

Определение 1

Такие действия, как сложение и вычитание квадратного корня, возможны только при условии одинакового подкоренного выражения.

Пример 1

Можно сложить или вычесть выражения 2 3 и 6 3 , но не 5 6 и 9 4 . Если есть возможность упростить выражение и привести его к корням с одинаковым подкоренным числом, то упрощайте, а потом складывайте или вычитайте.

Действия с корнями: основы

Пример 2

6 50 - 2 8 + 5 12

Алгоритм действия:

  1. Упростить подкоренное выражение . Для этого необходимо разложить подкоренное выражение на 2 множителя, один из которых, - квадратное число (число, из которого извлекается целый квадратный корень, например, 25 или 9).
  2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня. Обращаем ваше внимание, что второй множитель заносится под знак корня.
  3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями - только их можно складывать и вычитать.
  4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Совет 1

Если у вас пример с большим количеством одинаковых подкоренных выражений, то подчеркивайте такие выражения одинарными, двойными и тройными линиями, чтобы облегчить процесс вычисления.

Пример 3

Давайте попробуем решить данный пример:

6 50 = 6 (25 × 2) = (6 × 5) 2 = 30 2 . Для начала необходимо разложить 50 на 2 множителя 25 и 2, затем извлечь корень из 25, который равен 5, а 5 вынести из-под корня. После этого нужно умножить 5 на 6 (множитель у корня) и получить 30 2 .

2 8 = 2 (4 × 2) = (2 × 2) 2 = 4 2 . Сперва необходимо разложить 8 на 2 множителя: 4 и 2. Затем из 4 извлечь корень, который равен 2, а 2 вынести из-под корня. После этого нужно умножить 2 на 2 (множитель у корня) и получить 4 2 .

5 12 = 5 (4 × 3) = (5 × 2) 3 = 10 3 . Сперва необходимо разложить 12 на 2 множителя: 4 и 3. Затем извлечь из 4 корень, который равен 2, и вынести его из-под корня. После этого нужно умножить 2 на 5 (множитель у корня) и получить 10 3 .

Результат упрощения: 30 2 - 4 2 + 10 3

30 2 - 4 2 + 10 3 = (30 - 4) 2 + 10 3 = 26 2 + 10 3 .

В итоге мы увидели, сколько одинаковых подкоренных выражений содержится в данном примере. А сейчас попрактикуемся на других примерах.

Пример 4

  • Упрощаем (45) . Раскладываем 45 на множители: (45) = (9 × 5) ;
  • Выносим 3 из-под корня (9 = 3) : 45 = 3 5 ;
  • Складываем множители у корней: 3 5 + 4 5 = 7 5 .

Пример 5

6 40 - 3 10 + 5:

  • Упрощаем 6 40 . Раскладываем 40 на множители: 6 40 = 6 (4 × 10) ;
  • Выносим 2 из-под корня (4 = 2) : 6 40 = 6 (4 × 10) = (6 × 2) 10 ;
  • Перемножаем множители, которые стоят перед корнем: 12 10 ;
  • Записываем выражение в упрощенном виде: 12 10 - 3 10 + 5 ;
  • Поскольку у первых двух членов одинаковые подкоренные числа, мы можем их вычесть: (12 - 3) 10 = 9 10 + 5 .

Пример 6

Как мы видим, упростить подкоренные числа не представляется возможным, поэтому ищем в примере члены с одинаковыми подкоренными числами, проводим математические действия (складываем, вычитаем и т.д.) и записываем результат:

(9 - 4) 5 - 2 3 = 5 5 - 2 3 .

Советы:

  • Перед тем, как складывать или вычитать, необходимо обязательно упростить (если это возможно) подкоренные выражения.
  • Складывать и вычитать корни с разными подкоренными выражениями строго воспрещается.
  • Не следует суммировать или вычитать целое число или корень: 3 + (2 x) 1 / 2 .
  • При выполнении действий с дробями, необходимо найти число, которое делится нацело на каждый знаменатель, потом привести дроби к общему знаменателю, затем сложить числители, а знаменатели оставить без изменений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сложение и вычитание корней - один из наиболее распространенных «камней преткновения» для тех, кто проходит курс математики (алгебры) в средней школе. Однако научиться правильно складывать и вычитать их очень важно, потому что примеры на сумму или разность корней входят в программу базового Единого Государственного Экзамена по дисциплине «математика».

Для того чтобы освоить решение таких примеров, необходимо две вещи - разобраться в правилах, а также наработать практику. Решив один-два десятка типовых примеров, школьник доведет этот навык до автоматизма, и тогда ему уже будет нечего бояться на ЕГЭ. Начинать освоение арифметических действий рекомендуется со сложения, потому что складывать их немного проще, чем вычитывать.

Что такое корень

Проще всего объяснить это на примере квадратного корня. В математике имеется устоявшийся термин «возвести в квадрат». «Возвести в квадрат» означает однократно умножить конкретное число само на себя . Например, если возвести в квадрат 2, получится 4. Если возвести в квадрат 7, получится 49. Квадрат числа 9 равен 81. Таким образом, квадратный корень из 4 - это 2, из 49 - это 7, а из 81 - это 9.

Как правило, обучение этой теме в математике начинается именно с квадратных корней. Для того, чтобы сходу определять его, учащийся средней школы должен наизусть знать таблицу умножения. Тем, кто нетвердо знает эту таблицу, приходится пользоваться подсказками. Обычно процесс извлечения корневого квадрата из числа приводится в виде таблицы на обложках многих школьных тетрадей по математике.

Корни бывают следующих типов:

  • квадратные;
  • кубические (или так называемые третьей степени);
  • четвертой степени;
  • пятой степени.

Правила сложения

Для того чтобы успешно решить типовой пример, необходимо иметь в виду, что не все корневые числа можно складывать друг с другом . Чтобы их можно было сложить, их необходимо привести к единому образцу. Если это невозможно, значит, задача не имеет решения. Такие задачи тоже часто встречаются в учебниках математики в качестве своеобразной ловушки для учащихся.

Не разрешается сложение в заданиях, когда подкоренные выражения отличаются друг от друга. Это можно проиллюстрировать на наглядном примере:

  • перед учеником стоит задача: сложить квадратный корень из 4 и из 9;
  • неопытный ученик, не знающий правила, обычно пишет: «корень из 4 + корень из 9=корень из 13».
  • доказать, что этот способ решения неправильный, очень просто. Для этого нужно найти квадратный корень из 13 и проверить, верно ли решен пример;
  • с помощью микрокалькулятора можно определить, что он составляет примерно 3,6. Теперь осталось проверить решение;
  • корень из 4=2, а из 9=3;
  • Сумма чисел «два» и «три» равняется пяти. Таким образом, данный алгоритм решения можно считать неверным.

Если корни имеют одинаковую степень, но разные числовые выражения, он выносится за скобки, а в скобки вносится сумма двух подкоренных выражений . Таким образом, он извлекается уже из этой суммы.

Алгоритм сложения

Для того чтобы правильно решить простейшую задачу, необходимо:

  1. Определить, что именно требуют сложения.
  2. Разобраться, можно ли складывать значения друг с другом, руководствуясь существующими в математике правилами.
  3. Если они не подлежат сложению, нужно трансформировать их таким образом, чтобы их можно было складывать.
  4. Осуществив все необходимые преобразования, необходимо выполнить сложение и записать готовый ответ. Производить сложение можно в уме или с помощью микрокалькулятора, в зависимости от сложности примера.

Что такое подобные корни

Чтобы правильно решить пример на сложение, необходимо, в первую очередь, подумать о том, как можно его упростить. Для этого нужно обладать базовыми знаниями о том, что такое подобие.

Умение определять подобные помогает быстро решать однотипные примеры на сложение, приводя их в упрощенный вид. Чтобы упростить типовой пример на сложение, необходимо:

  1. Найти подобные и выделить их в одну группу (или в несколько групп).
  2. Заново написать имеющийся пример таким образом, чтобы корни, которые имеют один и тот же показатель, шли четко друг за другом (это и называется «сгруппировать»).
  3. Далее следует еще раз написать выражение заново, на этот раз таким образом, чтобы подобные (у которых один и тот же показатель и одна и та же подкоренная цифра) тоже шли друг за другом.

После этого упрощенный пример обычно легко поддается решению.

Для того, чтобы правильно решить любой пример на сложение, необходимо четко представлять себе основные правила сложения, а также знать о том, что такое корень и каким он бывает.

Иногда такие задачи с первого взгляда выглядят очень сложно, но обычно они легко решаются путем группировки подобных. Самое главное - практика, и тогда ученик начнет «щелкать задачи, как орешки». Сложение корней - один из самых важных разделов математики, поэтому учителя должны отводить достаточно времени на его изучение.

Видео

Разобраться в уровнениях с квадратными корнями вам поможет это видео.

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt{25}\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\) , \(\sqrt{-4}\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\) , то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\) , а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл )
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\) ; \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\) ; \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt{25}\) , то \ Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt{16}=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\) , а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2<0\) ;

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\) . \(\bullet\) Так как \(\sqrt{a^2}=|a|\) , то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt{4^6}=|4^3|=4^3=64\)
2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\) , то \(a Пример:
1) сравним \(\sqrt{50}\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\) . Таким образом, так как \(50<72\) , то и \(\sqrt{50}<\sqrt{72}\) . Следовательно, \(\sqrt{50}<6\sqrt2\) .
2) Между какими целыми числами находится \(\sqrt{50}\) ?
Так как \(\sqrt{49}=7\) , \(\sqrt{64}=8\) , а \(49<50<64\) , то \(7<\sqrt{50}<8\) , то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\ &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\ &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\) .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)! \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\ &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt{28224}\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt{28224}=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.