Силы взаимодействия между двумя молекулами. Молекулярные силы

Между молекулами вещества действуют одновременно силы притяжения и силы отталкивания. Эти силы в большой степени зависят от расстояний между молекулами.

Согласно экспериментальным и теоретическим исследованиям межмолекулярные силы взаимодействия обратно пропорциональны n -й степени расстояния между молекулами:

\(~F_r \sim \pm \frac{1}{r^n},\)

где для сил притяжения n = 7, а для сил отталкивания n = 9 ÷ 15.

Взаимодействие двух молекул можно описать при помощи графика зависимости проекции равнодействующей F r сил притяжения и отталкивания молекул от расстояния r между их центрами. Направим ось r от молекулы 1 , центр которой совпадает с началом координат, к находящемуся от него на расстоянии r 1 центру молекулы 2 (рис. 1, а).

Тогда проекция силы отталкивания молекулы 2 от молекулы 1 на ось r будет положительной. Проекция силы притяжения молекулы 2 к молекуле 1 будет отрицательной.

Силы отталкивания (рис. 3, б) гораздо больше сил притяжения на малых расстояниях (r < r 0), но гораздо быстрее убывают с увеличением r . Силы притяжения тоже быстро убывают с увеличением r , так что, начиная с некоторого расстояния r m , взаимодействием молекул можно пренебречь. Наибольшее расстояние r m , на котором молекулы еще взаимодействуют, называется радиусом молекулярного действия (r m ~ 1,57 · 10 -9 м).

При r = r 0 силы отталкивания по модулю равны силам притяжения.

Расстояние r 0 соответствует устойчивому равновесному взаимному положению молекул.

В различных агрегатных состояниях вещества расстояние между его молекулами различно. Отсюда и различие в силовом взаимодействии молекул и существенное различие в характере движения молекул газов, жидкостей и твердых тел.

В газах расстояния между молекулами в несколько раз превышают размеры самих молекул. Вследствие этого силы взаимодействия между молекулами газа малы и кинетическая энергия теплового движения молекул намного превышает потенциальную энергию их взаимодействия. Каждая молекула движется свободно от других молекул с огромными скоростями (сотни метров в секунду), меняя направление и модуль скорости при столкновениях с другими молекулами. Длина свободного пробега λ молекул газа зависит от давления и температуры газа. При нормальных условиях λ ~ 10 -7 м.

В жидкостях расстояние между молекулами значительно меньше, чем в газах. Силы взаимодействия между молекулами велики, и кинетическая энергия движения молекул соизмерима с потенциальной энергией их взаимодействия, вследствие чего молекулы жидкости совершают колебания около некоторого положения равновесия, затем скачкообразно переходят в новые положения равновесия через очень малые промежутки времени (10 –8 с), что приводит к текучести жидкости. Таким образом, в жидкости молекулы совершают в основном колебательные и поступательные движения. В твердых телах силы взаимодействия между молекулами настолько велики, что кинетическая энергия движения молекул намного меньше потенциальной энергии их взаимодействия. Молекулы совершают лишь колебания с малой амплитудой около некоторого постоянного положения равновесия - узла кристаллической решетки.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. .

При рассмотрении реальных газов - газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях < 10-9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

В XX в., по мере развития представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависимость сил межмолекулярного взаимодействия от расстояния г между молекулами, где F0 и Fп - соответственно силы отталкивания и притяжения, a F - их результирующая. Силы отталкивания считаются положительными, а силы взаимного притяжения - отрицательными.

На расстоянии г = г0 результирующая сила F = 0, т. е. силы притяжения и отталкивания уравновешивают друг друга. Таким образом, расстояние г0 соответствует равновесному расстоянию между молекулами, на котором бы они находились в отсутствие теплового движения. При г < г0 преобладают силы отталкивания (F > 0), при г > г0-силы притяжения (F < 0). На расстояниях г > 10-9 м межмолекулярные силы взаимодействия практически отсутствуют (F = 0).

Элементарная работа A силы F при увеличении расстояния между молекулами на dr совершается за счет уменьшения взаимной потенциальной энергии молекул, т. е.

Из анализа качественной зависимости потенциальной энергии взаимодействия молекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимодействия не действуют (г  ), то П = 0. При постепенном сближении молекул между ними появляются силы притяжения (F < 0), которые совершают положительную работу (A = Fdr > 0). Тогда, согласно (60.1), потенциальная энергия взаимодействия уменьшается, достигая минимума при r = r0. При г < г0 с уменьшением г силы отталкивания (F > 0) резко возрастают и совершаемая против них работа отрицательна (A = Fdr < 0). Потенциальная энергия начинает тоже резко возрастать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих молекул в состоянии устойчивого равновесия (г = г0) обладает минимальной потенциальной энергией.

2.Уравнение реального газа Ван-дер-Ваальса

Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальс (1837-1923) вывел уравнение состояния реального газа. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.

где а - постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm - молярный объем.

Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):

Для произвольного количества вещества v газа (v = m/M) с учетом того, что V = vVm, уравнение Ван-дер-Ваальса примет вид

где поправки а и b - постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b).

При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.

3.Переход из газообразного состояния в жидкое и твёрдое

Конденсация - переход воды из газообразного в жидкое состояние. При конденсации в атмосфере образуются мельчайшие капли диаметром порядка нескольких микрометров. Более круп­ные капли образуются путем слияния мелких капель или в результате таяния ледяных кристаллов.

Конденсация начинается, если воздух достигает насыщения, а это чаще всего происходит в атмосфере при понижении температуры. Водяной пар с понижением температуры до точки росы достигает состояния насыщения. При дальнейшем пониже­нии температуры избыток водяного пара сверх того, что нужно для насыщения, переходит в жидкое состояние.

Охлаждение воздуха чаще всего происходит адиабатически вследствие его расширения без отдачи тепла в окружающую роду. Такое расширение происходит преимущественно при подъеме воздуха.

Известно, что пока воздух не насыщен, он охлаждается адиабатически на 1С на каждые 100 м подъема. Синим образом, для воздуха, не очень далекого от насыщения, вполне достаточно подняться вверх на несколько сотен метров, и крайнем случае на одну-две тысячи метров, чтобы в нем начиналась конденсация.

При формировании туманов главной причиной охлаждения воздуха является уже не адиабатический подъем, а отдача тепла из воздуха земной поверхности.

В атмосферных условиях происходит не только конденса­ция, но и сублимация - образование кристаллов, переход водяно­го пара в твердое состояние. Этот процесс происходит при очень низких температурах - ниже -40°С. Твердые осадки, выпадаю­щие из облаков, обычно имеют хорошо выраженное кристалличе­ское строение; всем известны сложные формы снежинок - шестилучевые звездочки с многочисленными разветвлениями. В облаках и осадках обнаруживаются и более простые формы кристаллов, а также замерзшие капли. Кристаллы возникают и на земной поверхности при отрицательных температурах (иней, изморозь и др.).

Силы межмолекулярного взаимодействия.

Когда вещество находится в газообразном состоянии , тогда образующие его частицы – молекулы или атомы – хаотически движутся и при этом преобладающую часть времени находятся на больших расстояниях (в сравнении с их собственными размерами) расстояниях друг от друга. Вследствии этого силы взаимодействия между ними пренебрежимо малы .


Иначе обстоит дело, когда вещество находится в конденсированном состоянии – в жидком или твёрдом. Здесь расстояния между частицами вещества малы и силы взаимодействия между ними велики . Эти силы удерживают частицы жидкости или твёрдого тела друг около друга. Поэтому вещества в конденсированном состоянии имеют, в отличии от газов, постоянный при данной температуре объём.


Все силы, удерживающие частицы жидкости или твёрдого тела друг около друга, имеют электрическую природу . Но в зависимости от того, что представляют собой частицы – являются ли они атомами металического или неметалического элемента, ионами или молекулами – эти силы существенно различны .

Неметалы с атомным строением

Если вещество состоит из атомов, но не является металлом, то его атомы обычно связаны друг с другом ковалентной связью .

Металлы

Если вещество – металл , то часть электронов его атомов становится общими для всех атомов. Эти электроны свободно движутся между атомами, связывая их друг с другом.

Вещества с ионным строением

Если вещество имеет ионное строение , то образующие его ионы удерживаются друг около друга силами электростатического притяжения.

Вещества с молекулярным строением

В веществах с молекулярным строением имеет место межмолекулярное взаимодействие.


Силы межмолекулярного взаимодействия , называемые также силами Ван-дер-Ваальса , слабее ковалентных сил, но проявляются на больших расстояниях. В основе их лежит электростатическое взаимодействие диполей , но в различных веществах механизм возникновения диполей различен.


1. Ориентационное взаимодействие.


Если вещество состоит из полярных молекул , например, Н 2 О, НCl , то в конденсированном состоянии молекулы ориентируются друг по отношению к другу своими разноимённо заряженными концами , вследствии чего наблюдается их взаимное притяжение.


Такой вид межмолекулярного взаимодействия называется ориентационным взаимодействием . Тепловое движение молекул препятствует их взаимной ориентации, поэтому с ростом температуры ориентационный эффект ослабевает.


2. Индукционное взаимодействие.


В случае веществ, состоящих из неполярных , но способных к поляризации молекул, например СО2, наблюдается возникновение наведённых или индуцированных диполей .


Причина их появления обычно состоит в том, что каждый атом создаёт вблизи себя электрическое поле, оказывающее поляризующее действие на ближайший атом соседней молекулы. Молекула поляризуется и образовавшийся индуцированный диполь в свою очередь поляризует соседние молекулы.


В результате происходит взаимное притяжение молекул друг к другу . Это индукционное взаимодействие наблюдается также и у веществ с полярными молекулами, но при этом оно обычно значительно слабее ориентационного.


3. Дисперсионное взаимодействие.


Дисперсионные силы (Лондоновские силы) - силы электростатического притяжения мгновенного и индуцированного (наведённого) диполей электрически нейтральных атомов или молекул.


В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей .


Считается, что дисперсионная энергия не имеет классического аналога и определяется квантовомеханическими флуктуациями электронной плотности.


Как показывает квантовая механика, мгновенные диполи возникают в твёрдых телах и жидкостях согласованно , причём концы соседних молекул оказываются заряженными электричеством противоположного знака, что приводит к их притяжению .


Это явление, называемое дисперсионным взаимодействием , имеет место во всех веществах, находящихся в конденсированном состоянии. В частности, оно обуславливает переход благородных газов при низких температурах в жидкое состояние.


Соотношение молекулярных сил.


Относительная величина рассмотренных видов межмолекулярных сил зависит от полярности и от поляризуемости молекул вещества.


Чем больше полярность молекул, тем больше ориентационные силы .


Чем крупнее атомы , чем слабее связаны внешние электроны атомов, чем больше деформируется электронное облако, тем значительнее дисперсионные силы .


Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов , составляющих размеры этих веществ.


Например:

  • в случае HCl на долю дисперсионных сил приходится 81% всего
    межмолекулярного взаимодействия,
  • для НBr эта величина составляет 95% ,
  • для HI - 99,5% .

    • Индукционные силы почти всегда малы .


Взаимодействие атомов и молекул вещества. Между молекулами вещества действуют одновременно силы притяжения и силы отталкивания. Эти силы в сильной степени зависят от расстояний между молекулами. Согласно экспериментальным и теоретическим исследованиям, межмолекулярные силы взаимодействия обратно пропорциональны n-ой степени расстояния между молекулами. где для сил притяжения n=7, а для сил отталкивания n=9…15.


Силы отталкивания гораздо больше сил притяжения на малых расстояниях (r


В газах расстояние между молекулами во много раз превышают размеры самих молекул. Вследствие этого силы взаимодействия между молекулами газа малы. Каждая молекула движется свободно от других молекул с огромными скоростями (сотни метров в секунду), испытывая редкие столкновения и меняя при этом направление и модуль скорости. Длина свободного пробега » молекул газа зависит от давления и температуры газа. При нормальных условиях »~10-7 м. В жидкостях расстояние между молекулами значительно меньше, чем в газах. Силы взаимодействия между молекулами велики, вследствие чего молекулы жидкости совершают колебания около некоторого положения равновесия, затем делают скачок, колеблются в новом окружении, затем снова делают скачок и т.д.


В твердых телах расстояние между молекулами еще меньше, вследствие чего силы взаимодействия между молекулами настолько велики, что молекулы совершают лишь колебания с малой амплитудой около некоторого постоянного положения равновесия – узла кристаллической решетки.