Распространение радиоволн.

УДК 537.874

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ОСЛАБЛЕНИЯРАДИОВОЛН СТРОИТЕЛЬНЫМИ И ЭКРАНИРУЮЩИМИ
МАТЕРИАЛАМИ В ДИАПАЗОНЕ ЧАСТОТ 800 МГц – 17 ГГц

А. Н. Катруша

Военно-учебный научный центр Военно-воздушных сил «Военно-воздушная академия им. профессора Н.Е. Жуковского и Ю.А. Гагарина»

Аннотация. Экспериментально получены коэффициенты прохождения радиоволн для различных материалов в широком диапазоне частот; рассмотрены типовые трассы распространения радиоволн при организации экранирования оконного проема здания; проведен физический анализ полученных результатов.

Ключевые слова: распространение радиоволн, экспериментальные исследования, электромагнитное экранирование.

Abstract. Factors of passage of radio-waves for various materials in a wide range of frequencies are experimentally received; typical lines of propagation of radio-waves are considered at the organisation of shielding of a window aperture of a building; the physical analysis of the received results is carried out.

Keywords: propagation of radio-waves, experimental researches, e lectromagnetic shielding.

Введение.

Оценка уровня сигнала при распространении радиоволн в условиях городской застройки необходима при решении таких важных задач, как планирование и организация сетей мобильной радиосвязи (в том числе сверхширокополосных), беспроводных компьютерных сетей, а также формирования помех с целью предотвращения утечки информации по радиоканалу. Кроме того в настоящее время представляет интерес исследование ослабления различными препятствиями сверхкоротких электромагнитных импульсов при их деструктивном воздействии на радиоэлектронную аппаратуру, находящуюся внутри здания.

Данные по ослаблению радиоволн при их прохождении внутрь здания могут быть найдены в справочной литературе, например , однако они приводятся или в обобщенном виде для ряда выборочных частот, или в виде усредненных значений в весьма широких диапазонах частот (например, в величина ослабления при прохождении радиоволн внутрь здании усреднена для диапазона частот 500 МГц – 3 ГГц). Очевидно, что для адекватной оценки уровней ослабления сверхширокополосных сигналов и сверхкоротких импульсов необходимы более детальные сведения о коэффициентах ослабления радиоволн различными препятствиями в полосе частот сигналов (импульсов), достигающей несколько гигагерц.

Для исследований выбран диапазон частот 800 МГц – 17 ГГц, охватывающий диапазоны работы современных сетей мобильной радиосвязи, беспроводной передачи данных, сверхширокополосных систем связи, а также наиболее актуальные диапазоны частот сверхкоротких электромагнитных импульсов.

Результаты экспериментальных исследований.

Рассмотрим каноническую задачу прохождения радиоволн внутрь здания при нормальном падении волны на фронтальную стену здания. Очевидно, что наименьшее ослабление ожидается при распространении радиоволн через оконный проем. В связи с этим задача экранирования помещений решается путем применения оконных штор из экранирующих материалов.

Необходимо отметить, что для экранирующих материалов известны только коэффициенты прохождения сквозной волны, полученные в лабораторных условиях . Поэтому представляет интерес исследование характеристик экранирующих материалов на трассах распространения в составе препятствия «окно + экранирующий материал», а также влияние дифракционных компонент на параметры экранирования.

Экспериментальная установка для измерения коэффициентов прохождения радиоволн через препятствия состояла из передатчика, приемника и двух встречно направленных рупорных антенн П6-23М. В качестве передатчика использовался генератор сигналов Rhode & Swarz SMF 43, приемником служил анализатор спектра Rhode & Swarz FSU 26.

Прохождение радиоволн через стеклопакет.

Экспериментальные исследования прохождения радиоволн через окно проводились с использованием стандартного двухкамерного стеклопакета (три листа стекла) в составе пластикового оконного блока. Передающая и приемная антенны размещались встречно на удалении 1,5 м от окна (рис.1).

Рис.1. Схема измерения коэффициента прохождения черезстеклопакет

Измерялся уровень мощности сигнала на входе анализатора спектра при наличии стеклопакета, где - частота сигнала . Затем створка окна открывалась, и измерялся уровень сигнала при отсутствии препятствия между антеннами (в свободном пространстве). Коэффициент прохождения радиоволн через стеклопакет относительно свободного пространства рассчитывался по формуле

Частотная зависимость , полученная на основе проведенных измерений, представлена на рис. 2.


Рис.2. Частотная зависимость коэффициента прохождения радиоволн через стеклопакет

Анализ рисунка показывает, что коэффициент прохождения через стеклопакет существенно зависит от частоты. На частотах 800 МГц – 3 ГГц наблюдается осциллирующий характер коэффициента прохождения, однако средний уровень равен 0 дБ. Вероятно, эти осцилляции обусловлены отражением радиоволн от металлических составляющих оконной конструкции (на частотах 1-2 ГГц диаграмма направленности антенны П6-23М достаточно широкая, поэтому отраженные волны могут вносить ощутимый вклад в принимаемый сигнал). В диапазоне 3 – 5,8 ГГц ослабление радиоволн незначительное (до -4 дБ). На частотах 5,8 – 13 ГГц наблюдается существенное ослабление сигнала до -20 дБ. В диапазоне 13 – 16 ГГц коэффициент прохождения не превышает -2 дБ. Выше 16 ГГц снова наблюдается увеличение ослабления. Такой характер частотной зависимости коэффициента прохождения объясняется зависимостью диэлектрической проницаемости стекла от частоты (а, следовательно, частотной зависимостью коэффициента отражения радиоволн от стекла).

Для качественного выявления указанной зависимости проведены дополнительные измерения. Сначала измерялся уровень сигнала при прохождении радиоволн через стеклопакет . Затем параллельно стеклопакету размещалось дополнительное стекло на некотором расстоянии d (рис. 3) и измерялся уровень сигнала . Коэффициент прохождения через дополнительное стекло в составе препятствия «стеклопакет + стекло» рассчитывался по формуле

Рис. 3 Схема измерения коэффициента прохождения радиоволн через стеклопакет и дополнительное стекло

Очевидно, что коэффициент прохождения препятствия «стеклопакет + дополнительное стекло» относительно свободного пространства можно рассчитать как , однако для оценки ослабления, вносимого дополнительным стеклом, рассмотрим зависимость .

На рис. 4 приведены частотные зависимости коэффициента прохождения радиоволн при расстоянии между стеклопакетом и дополнительным стеклом d =30 см и 40 см, а также при развороте дополнительного стекла в горизонтальной плоскости на угол 45 0 .


Рис. 4. Частотные зависимости коэффициента прохождения радиоволн через дополнительное стекло

Из анализа рис. 4 можно сделать следующие выводы. В диапазоне 3 – 13 ГГц наблюдаются существенные периодические осцилляции коэффициента прохождения, достигающие размаха в 20 дБ. Такой резонансный характер коэффициента прохождения объясняется многочисленными переотражениями между стеклопакетом и дополнительным стеклом. Причем при увеличении расстояния d с 30 см до 40 см частота осцилляций увеличивается, поскольку разность хода между различными лучами, приходящими в точку приема возрастает. При развороте дополнительного стекла на 45 0 периодические осцилляции прекращаются, однако на некоторых частотах наблюдаются глубокие провалы коэффициента прохождения.

Таким образом, в диапазонах частот 800 МГц – 3 ГГц и 13 ГГц – 17 ГГц диэлектрическая проницаемость стекла близка к диэлектрической проницаемости воздуха, в диапазоне частот 3 ГГц – 13 ГГц диэлектрическая проницаемость стекла отличается от диэлектрической проницаемости воздуха, причем это отличие наиболее существенно в диапазоне 6,5 ГГц – 12 ГГц.

Прохождение радиоволн через экранирующие материалы.

Задача экранирования электромагнитных волн является актуальной как при организации электромагнитной совместимости, так и при защите радиоэлектронной аппаратуры от мощных электромагнитных импульсов. В качестве экранирующих материалов достаточно часто применяются различные металлизированные ткани, например, полиэфирная ткань МЕТАКРОН, покрытая никелем .

На рис. 5 приведены частотные зависимости коэффициента прохождения тканей МЕТАКРОН 1П4-Н3 толщиной 3 мкм и 1П16-Н5 толщиной 5 мкм. Измерения проводились в комнате размером 4 м × 8 м × 2,5 м, размер экранирующего материала составлял 2,5 м × 4 м (экран полностью перекрывал поперечное сечение комнаты). Расстояние между антеннами составляло 1 м (рис. 5а) и 6 м (рис. 5б).

Анализ рис. 5 показывает, что при прохождении радиоволн через более тонкую ткань 1П4-Н3 преобладает сквозная волна, ослабление составляет в среднем -30 дБ почти во всем исследуемом диапазоне частот. Однако на частотах менее 3 ГГц уровень дифракционных волн становится соизмерим с уровнем сквозной волны, при этом появляются интерференционные осцилляции коэффициента прохождения, достигающие 20 дБ. При использовании в качестве экрана ткани 1П16-Н5 во всем диапазоне частот преобладают дифракционные и переотраженные в комнате волны, при этом осцилляции коэффициента прохождения достигают 30 дБ.



Рис. 5. Частотные зависимости коэффициента прохождения радиоволн через металлизированные ткани

Увеличение расстояния между антеннами приводит к повышению уровней дифракционных компонент (рис. 5б), особенно это заметно для ткани 1П16-Н5 (коэффициент прохождения увеличивается в среднем на 20 дБ). При этом на частотах менее 3 ГГц различия между коэффициентами прохождения тканей 1П4-Н3 и 1П16-Н5 практически отсутствуют (рис. 5б) вследствие доминирования дифракционных компонент.

Необходимо отметить, что полученные значения коэффициентов прохождения существенно отличаются от результатов лабораторных испытаний , поскольку учитывают в точке приема не только сквозную, но и дифракционную компоненту радиоволн, которая во многих практически важных случаях может вносить существенный вклад в формируемое поле.

Для решения задач электромагнитного экранирования на практике могут применяться радиоотражающие краски. На рис. 6 приведены измеренные частотные зависимости коэффициентов прохождения радиоволн через лист фанеры размером 1 м × 1 м, покрытый графитовой краской.


Рис. 6. Частотные зависимости коэффициента прохождения радиоволн через лист фанеры, покрытый графитовой краской, и металлический лист

Расстояние между антеннами составляло 1 м. Для сравнения на рисунке также представлена частотная зависимость коэффициента прохождения через сплошной металлический лист аналогичного размера.

Ослабление, вносимое экраном с графитовым покрытием, составляет в среднем -20 дБ практически во всем диапазоне частот. При этом доминирует сквозная волна. Как известно, при прохождении радиоволн через металлический лист преобладают дифракционные компоненты (сквозная компонента практически отсутствует). Из сравнения двух зависимостей видно, что дифракционная компонента при прохождении через лист фанеры, покрытый графитовой краской, соизмерима со сквозной компонентой на частотах менее 4 ГГц, а на частотах порядка 1 ГГц начинает доминировать.

Необходимо отметить, что на практике с помощью экранирующих материалов закрываются оконные проемы, поэтому представляет интерес оценка коэффициента прохождения радиоволн при размещении экрана перед окном. На рис. 7 приведена схема измерения коэффициента прохождения, моделирующая ситуацию экранирования помещения с оконным проемом. При этом имитируется прохождение радиоволн с улицы внутрь здания через окно.

Рис. 7 Схема измерения коэффициента прохождения через экранирующий материал в составе препятствия «стеклопакет + экран»

Производились измерения мощности сигнала и при отсутствии и наличии экранирующего материала соответственно. Расчет коэффициента прохождения экранирующего материала в составе препятствия «стеклопакет + экранирующий материал» производился по формуле

Частотная зависимость коэффициента прохождения листа фанеры, покрытого графитовой краской, относительно стеклопакета приведена на рис. 8, при расстоянии между экраном и стеклопакетом = 14 см и = 30 см. Расстояние между антеннами составляло 3 м.


Рис. 8. Частотные зависимости коэффициента прохождения через экран с графитовым покрытием, расположенный перед окном

Анализ рис. 8 показывает, что коэффициент прохождения носит осциллирующий характер, однако в диапазоне частот 800 МГц – 3 ГГц осцилляции обусловлены интерференцией дифракционных компонент поля, а в диапазоне 3 ГГц – 14 ГГц интерференцией сквозных волн многократно переотраженных между стеклопакетом и экранирующим материалом. Такой вывод обосновывается сравнением зависимостей при различных удалениях экрана от стеклопакета. И если в диапазоне 3-14 ГГц при уменьшении расстояния с 30 до 14 см частота осцилляций уменьшается в 2 раза (что обусловлено уменьшением разности хода между переотраженными волнами в резонаторе «стеклопакет – экран»), то в диапазоне частот 800 МГц – 3 ГГц зависимости практически не отличаются.

Из сравнения зависимостей, представленных на рис. 7 и 8, можно сделать следующий вывод: ослабление, вносимое экраном существенно зависит от условий распространения радиоволн, при этом за счет многократных переотражений между стеклопакетом и экраном может значительно отличаться (на 10 дБ и более) от ослабления, вносимого одним экраном, размещенным в свободном пространстве.

В качестве экранирующего материала кроме специально изготавливаемых металлизированных тканей и радиоотражающих покрытий может применяться обычная солнцезащитная пленка. Очевидно, что наличие металлизации делает солнцезащитную пленку радиоотражающей, поэтому представляет интерес измерение коэффициента прохождения радиоволн через пленку в исследуемом диапазоне частот.

На рис. 9 представлены частотные зависимости коэффициента прохождения радиоволн через солнцезащитную пленку средней плотности (один и два слоя) размером 0,5 м × 1 м. Расстояние между антеннами составляло 1 м.


Рис. 9. Частотные зависимости коэффициента прохождения через солнцезащитную пленку

Из анализа рис. 9 видно, что коэффициент прохождения через один слой пленки в среднем составляет -40 дБ. Необходимо отметить, что экранирующие свойства обычной солнцезащитной пленки в среднем на 10 дБ превышают экранирующие свойства ткани МЕТАКРОН 1П4-Н3 (рис. 5). Таким образом, солнцезащитная пленка вполне может использоваться в качестве экранирующего материала. При этом пленка может наклеиваться на оконное стекло и применяться в качестве шторы на некотором удалении от окна.

На рис. 10 представлены частотные зависимости коэффициента прохождения одного слоя солнцезащитной пленки, расположенной перед окном на расстоянии 40 см. Расстояние между антеннами составляло 3 м.


Рис. 10. Частотная зависимость коэффициента прохождения радиоволн через солнцезащитную пленку, расположенную перед окном

Анализ зависимостей, представленных на рис. 10 показывает, что частотная зависимость коэффициента прохождения носит весьма изрезанный характер. На частотах 3 ГГц – 14 ГГц интерференционные осцилляции обусловлены резонансными переотражениями радиоволн между стеклопакетом и пленкой, при этом полученная зависимость качественно отличается от аналогичной зависимости коэффициента прохождения, представленной на рис. 8 (вместо периодических осцилляций наблюдается хаотические изменения коэффициента прохождения). Это объясняется неровной (волнистой) поверхностью пленки, используемой в экспериментах, в результате коэффициент отражения от пленки существенно зависел от частоты.

Прохождение радиоволн через стену.

Необходимо отметить, что при прохождении радиоволн внутрь здания ослабление вносимое стеной может быть существенно меньше ослабления экранированного оконного проема.

В работе приводятся результаты экспериментальных исследований ослабления радиоволн сплошными стенами различной толщины. Однако в настоящее время наружные стены зданий часто имеют слоистую структуру, например, «1-й слой кирпича – утеплитель – 2-й слой кирпича».

На рис. 11 представлены результаты измерения коэффициента прохождения через стену, состоящую из двух слоев кирпичной кладки толщиной 12 см и 9 см и воздушного пространства между ними 15 см (сплошная линия на рисунке). Необходимо отметить, что при проведении экспериментов использовалась модельная сухая стена, выполненная в виде внутренней перегородки здания. Для сравнения на рис. 11 также приведены усредненные значения коэффициента прохождения через сплошную внутреннюю кирпичную стену, полученные в работе и пересчитанные для толщины кирпичной кладки равной 21 см (штриховая линия).


Рис. 11. Коэффициент прохождение радиоволн через стену

Анализ рис. 11 показывает, что частотная зависимость коэффициента прохождения имеет осциллирующий характер, который обусловлен многочисленными преотражениями между двумя слоями кирпичной кладки. При этом на частотах выше 10 ГГц средний уровень коэффициента прохождения почти не меняется и даже несколько возрастает. При одинаковой суммарной толщине кирпичной кладки двухслойная стена вносит большее ослабление по сравнению с однослойной, что объясняется дополнительными потерями на отражение от границ раздела сред «воздух – кирпич» и «кирпич – воздух» при прохождении волны через второй слой стены.

Выводы.

Проведены экспериментальные исследования ослабления радиоволн при их прохождении через стену с оконным проемом. Экспериментально показано, что на частотах 3-12 ГГц ослабление радиоволн стеклопакетом весьма существенно вследствие значительного отражения радиоволн слоем стекла. При использовании экранирующих материалов недостаточно данных о коэффициентах прохождения сквозной волны, полученных в лабораторных условиях. На реальных трассах распространения радиоволн наряду со сквозной необходимо учитывать дифракционную компоненту, которая может вносить значительный вклад в результирующее поле. При размещении экранирующих материалов перед окном необходимо учитывать многочисленные отражения радиоволн в резонаторе «стеклопакет – экранирующий материал», которые приводят к существенным изменениям экранирующих свойств материалов.

Литература

1. Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz . Recommendation ITU-R P.1411-6, Geneva (02/2012).

2. Propagation data required for the design of broadcasting-satellite systems. Recommendation ITU - R P .679-3, (02/2001).

3. Металлизированная электропроводящая ткань Метакрон для защиты от излучений [Электронный ресурс]: ООО НПП «Техностиль». URL : http://www.metakron.ru

4. Радиоэкранирующие материалы [Электронный ресурс]: ООО НПП «Радиострим». URL: http://www.radiostrim.ru/ 100-screen.html .

5. А. И. Рыжов, В. А. Лазарев, Т. И. Мохсени, Д. В. Никеров, Ю. В. Андреев, А. С. Дмитриев, Н. П. Чубинский. Ослабление сверхширокополосных хаотических сигналов диапазона 3–5 ГГц при прохождении через стены зданий. // Журнал радиоэлектроники: электронный журнал. 2012. N5. URL: http://сайт/jre/may12/1/text.pdf.

Распространение радиоволн, процессы распространения электромагнитных волн радиодиапазона в атмосфере, космическом пространстве и толще Земли. Радиоволны , излучаемые передатчиком, прежде чем попасть в приёмник, проходят путь, который может быть сложным. Радиоволны могут достигать пункта приёма, распространяясь по прямолинейным траекториям, огибая выпуклую поверхность Земли, отражаясь от ионосферы, и т. д. Способы Р. р. существенно зависят от длины волны l, от освещённости земной атмосферы Солнцем и от ряда др. факторов (см. ниже).

Прямые волны. В однородных средах радиоволны распространяются прямолинейно с постоянной скоростью, подобно световым лучам (радиолучи). Такое Р. р. называется свободным. Условия Р. р. в космическом пространстве при радиосвязи между наземной станцией и космическим объектом, между двумя космическими объектами, при радиоастрономических наблюдениях, при радиосвязи наземной станции с самолётом или между самолётами близки к свободному.

Волну, излученную антенной, на больших расстояниях от неё можно считать плоской (см. Излучение и приём радиоволн ). Плотность потока электромагнитной энергии, пропорциональная квадрату напряжённости поля волны, убывает с увеличением расстояния r от источника обратно пропорционально r 2, что приводит к ограничению расстояния, на котором может быть принят сигнал передающей станции. Дальность действия радиостанции (при отсутствии поглощения) равна: , где P c - мощность сигнала на входе приёмника, Р ш - мощность шумов, G1, G2 - коэффициенты направленного действия передающей и приёмной антенн. Скорость Р. р. в свободном пространстве равна скорости света в вакууме : с = км /сек.

При распространении волны в материальной среде (например, в земной атмосфере, в толще Земли, в морской воде и т. п.) происходят изменение её фазовой скорости и поглощение энергии. Это объясняется возбуждением колебаний электронов и ионов в атомах и молекулах среды под действием электрического поля волны и переизлучением ими вторичных волн. Если напряжённость поля волны мала по сравнению с напряжённостью поля, действующего на электрон в атоме, то колебания электрона под действием поля волны происходят по гармоническому закону с частотой пришедшей волны. Поэтому электроны излучают радиоволны той же частоты, но с разными амплитудами и фазами. Сдвиг фаз между первичной и переизлучённой волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн. Поглощение и изменение фазовой скорости в среде характеризуются показателем поглощения c и показателем преломления n , которые, в свою очередь, зависят от диэлектрической проницаемости e и проводимости s среды, а также от длины волны l:

(1)

Коэффициент поглощения b = 2pc/l, фазовая скорость u = c /n . В этом случае r д определяется не только характеристиками передатчика, приёмника и длиной волны, но и свойствами среды (e, s). В земных условиях Р. р. обычно отличается от свободного. На Р. р. оказывают влияние поверхность Земли, земная атмосфера, структура ионосферы и т. д. Влияние тех или иных факторов зависит от длины волны.

Влияние поверхности Земли на распространение радиоволн зависит от расположения радиотрассы относительно её поверхности.

Р. р. - пространственный процесс, захватывающий большую область. Но наиболее существенную роль в этом процессе играет часть пространства, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах которого А и В расположены передатчик и приёмник (рис. 1 ). Большая ось эллипсоида практически равна расстоянию R между передатчиком и приёмником, а малая ось ~. Чем меньше l, тем уже эллипсоид, в оптическом диапазоне он вырождается в прямую линию (световой луч). Если высоты Z1 и Z2 , на которых расположены антенны передатчика и приёмника относительно поверхности Земли, велики по сравнению с l, то эллипсоид не касается поверхности Земли (рис. 1 , а). Поверхность Земли не оказывает в этом случае влияния на Р. р. (свободное распространение). При понижении обеих или одной из конечных точек радиотрассы эллипсоид коснётся поверхности Земли (рис. 1 , б) и на прямую волну, идущую от передатчика к приёмнику, належится поле отражённой волны. Если при Z1 >> l и Z2 >> l, то это поле можно рассматривать как луч, отражённый земной поверхностью по законам геометрической оптики. Поле в точке приёма определяется интерференцией прямого и отражённого лучей. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля (рис. 2 ). Условие Z1 и Z2 >> l практически может выполняться только для метровых и более коротких волн, поэтому лепестковая структура поля характерна для ультракоротких волн (УКВ).

При увеличении l существенная область расширяется и пересекает поверхность Земли. В этом случае уже нельзя представлять волновое поле как результат интерференции прямой и отражённой волн. Влияние Земли на Р. р. в этом случае обусловлено несколькими факторами: земля обладает значительной электропроводностью , поэтому Р. р. вдоль поверхности Земли приводит к тепловым потерям и ослаблению волны. Потери энергии в земле увеличиваются с уменьшением l.

Помимо ослабления, происходит также изменение структуры поля волны. Если антенна у поверхности Земли излучает поперечную линейно-поляризованную волну (см. Поляризация волн ), у которой напряжённость электрического поля Е перпендикулярна поверхности Земли, то на больших расстояниях от излучателя волна становится эллиптически поляризованной (рис. 3 ). Величина горизонтальной компоненты E x значительно меньше вертикальной E z и убывает с увеличением проводимости s земной поверхности. Возникновение горизонтальной компоненты позволяет вести приём земных волн на т. н. земные антенны (2 проводника, расположенные на поверхности Земли или на небольшой высоте). Если антенна излучает горизонтально-поляризованную волну (Е параллельно поверхности Земли), то поверхность Земли ослабляет поле тем больше, чем больше s, и создаёт вертикальную составляющую. Уже на небольших расстояниях от горизонтального излучателя вертикальная компонента поля становится больше горизонтальной. При распространении вдоль Земли фазовая скорость земных волн меняется с расстоянием, однако уже на расстоянии ~ нескольких l от излучателя она становится равной скорости света, независимо от электрических свойств почвы.

Выпуклость Земли является своеобразным «препятствием» на пути радиоволн, которые, дифрагируя, огибают Землю и проникают в «область тени». Т. к. дифракция волн заметно проявляется тогда, когда размеры препятствия соизмеримы или меньше l, а размер выпуклости Земли можно охарактеризовать высотой шарового сегмента h (рис. 4 ), отсекаемого плоскостью, которая проходит через хорду, соединяющую точки расположения приёмника и передатчика (см. табл.), то условие h << l выполняется для метровых и более длинных волн. Если учесть, что с уменьшением l увеличиваются потери энергии в Земле, то практически только километровые и более длинные волны могут проникать глубоко в область тени (рис. 5 ).

Высота шарового сегмента h для различных расстояний между передатчиком и приёмником

Расстояние, км

Земная поверхность неоднородна, наиболее существенное влияние на Р. р. оказывают электрические свойства участков трассы, примыкающих к передатчику и приёмнику. Если радиотрасса пересекает линию берега, т. е. проходит над сушей, а затем над морем (s ® ¥) , то при пересечении береговой линии резко изменится напряжённость поля (рис. 6 ), т. е. амплитуда и направление распространения волны (береговая рефракция). Однако береговая рефракция является местным возмущением поля радиоволны, уменьшающимся по мере удаления от береговой линии.

Рельеф земной поверхности также влияет на Р. р. Это влияние зависит от соотношения между высотой неровностей поверхности h , горизонтальной протяжённостью l , l и углом падения q волны на поверхность (рис. 7 ). Если выполняются условия:

4p2l 2 sin2q/l2 £ 1; 2psin q << 1, (2)

то неровности считаются малыми и пологими. В этом случае они мало влияют на Р. р. При увеличении q условия (2) могут нарушаться. При этом энергия волны рассеивается, и напряжённость поля в направлении отражённого луча уменьшается (возникают диффузные отражения).

Высокие холмы, горы и т. п., кроме того, сильно «возмущают» поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению волны из-за интерференции прямых и отражённых от поверхности Земли волн (рис. 8 ).

Распространение радиоволн в тропосфере. Рефракция радиоволн. Земные радиоволны распространяются вдоль поверхности Земли в тропосфере . Проводимость тропосферы s для частот, соответствующих радиоволнам (за исключением миллиметровых волн), практически равна 0; диэлектрическая проницаемость e и, следовательно, показатель преломления n являются функциями давления и температуры воздуха, а также давления водяного пара. У поверхности Земли n » 1,0003. Изменение e и n с высотой зависит от метеорологических условий. Обычно e и n уменьшаются, а фазовая скорость u растет с высотой. Это приводит к искривлению радиолучей (рефракция радиоволн, рис. 9 ). Если в тропосфере под углом к горизонту распространяется волна, фронт которой совпадает с прямой ав (рис. 9 ), то вследствие того, что в верхних слоях тропосферы волна распространяется с большей скоростью, чем в нижних, верхняя часть фронта волны обгоняет нижнюю и фронт волны поворачивается (луч искривляется). Т. к. n с высотой убывает, то радиолучи отклоняются к Земле. Это явление, называется нормальной тропосферной рефракцией, способствует Р. р. за пределы прямой видимости, т. к. за счёт рефракции волны могут огибать выпуклость Земли. Однако практически этот эффект может играть роль только для УКВ, поскольку для более длинных волн преобладает огибание в результате дифракции. Метеорологические условия могут ослаблять или усиливать рефракцию по сравнению с нормальной.

Тропосферный волновод. При некоторых условиях (например, при движении нагретого воздуха с суши над поверхностью моря) температура воздуха с высотой не уменьшается, а увеличивается (инверсии температуры). При этом преломление в тропосфере может стать столь сильным, что вышедшая под небольшим углом к горизонту волна на некоторой высоте изменит направление на обратное и вернётся к Земле. В пространстве, ограниченном снизу Землёй, а сверху как бы отражающим слоем тропосферы, волна может распространяться на очень большие расстояния (волноводное распространение радиоволн). Так же как в металлических радиоволноводах , в тропосферных волноводах могут распространяться волны, длина которых меньше критической (lкр » 0,085 d 3/2 , d - высота волновода в м , lкр в см ). Толщина слоев инверсии в тропосфере обычно не превышает ~ 50-100 м , поэтому волноводным способом могут распространяться только дециметровые, сантиметровые и более короткие волны.

Рассеяние на флуктуациях e. Помимо регулярных изменений e с высотой, в тропосфере существуют нерегулярные неоднородности (флуктуации) e, возникающие в результате беспорядочного движения воздуха. На них происходит рассеяние радиоволн УКВ диапазона. Т. о., область пространства, ограниченная диаграммами направленности приёмной и передающей антенн и содержащая большое число неоднородностей e, является рассеивающим объёмом. Рассеяние приводит к флуктуациям амплитуды и фазы радиоволны, а также к распространению УКВ на расстояния, значительно превышающие прямую видимость (рис. 10 ). При этом поле в точке приёма В образуется в результате интерференции рассеянных волн. Вследствие интерференции большого числа рассеянных волн возникают беспорядочные изменения амплитуды и фазы сигнала. Однако среднее значение амплитуды сигнала значительно превышает амплитуду, которая могла бы быть обусловлена нормальной тропосферной рефракцией.

Поглощение радиоволн. Тропосфера прозрачна для всех радиоволн вплоть до сантиметровых. Более короткие волны испытывают заметное ослабление в капельных образованиях (дождь, град, снег, туман), в парах воды и газах атмосферы. Ослабление обусловлено процессами поглощения и рассеяния. Каждая капля воды обладает значительной проводимостью и волна возбуждает в ней высокочастотные токи. Плотность токов пропорциональна частоте, поэтому значительные токи, а следовательно, и тепловые потери, возникают только при распространении сантиметровых и более коротких волн. Эти токи вызывают не только тепловые потери, но являются источниками вторичного рассеянного излучения, ослабляющего прямой сигнал. Плотность потока рассеянной энергии обратно пропорциональна l4, если размер рассеивающей частицы d < l, и не зависит от l, если d >> l (см. Рассеяние света ). Практически через область сильного дождя или тумана волны с l < 3 см распространяться не могут. Волны короче 1,5 см , помимо этого, испытывают резонансное поглощение в водяных парах (l = 1,5 см ; 1,35 см ; 0,75 см ; 0,5 см ; 0,25 см ) и кислороде (l = 0,5 см и 0,25 см ). Энергия распространяющейся волны расходуется в этом случае на ионизацию или возбуждение атомов и молекул. Между резонансными линиями имеются области малого поглощения.

Распространение радиоволн в ионосфере. В ионосфере - многокомпонентной плазме , находящейся в магнитном поле Земли, механизм Р. р. сложнее, чем в тропосфере. Под действием радиоволны в ионосфере могут возникать как вынужденные колебания электронов и ионов, так и различные виды коллективных собственных колебаний (плазменные колебания). В зависимости от частоты радиоволны w основную роль играют те или другие из них и поэтому электрические свойства ионосферы различны для различных диапазонов радиоволн. При высокой частоте w в Р. р. принимают участие только электроны, собственная частота колебаний которых (Ленгмюровская частота) равна:

(3)

где е - заряд, m - масса, N - концентрация электронов. Вынужденные колебания свободных электронов ионосферы, в отличие от электронов тропосферы, тесно связанных с атомами, отстают от электрического поля высокочастотной волны по фазе почти на 2p. Такое смещение электронов усиливает поле Е волны в ионосфере (рис. 11 ). Поэтому диэлектрическая проницаемость e, равная отношению напряжённости внешнего поля к напряжённости поля внутри среды, оказывается для ионосферы < 1: e = 1 - w20/w2. Учёт столкновений электронов с атомами и ионами даёт более точные формулы для e и s ионосферы:

, (4)

где n - число столкновений в секунду.

Для высоких частот, начиная с коротких волн, в большей части ионосферы справедливо соотношение: w2 >> n2 и показатели преломления n и поглощения c равны:

; (5)

С увеличением частоты c уменьшается, а n растет, приближаясь к 1. Т. к. n < 1, фазовая скорость распространения волны . Скорость распространения энергии (групповая скорость волны) в ионосфере равна с ×n и в соответствии с относительности теорией меньше с.

Отражение радиоволн. Для волны, у которой w < w0n и u становятся мнимыми величинами, это означает, что такая волна не может распространяться в ионосфере. Поскольку концентрация электронов N и плазменная частота w0 в ионосфере увеличиваются с высотой (рис. 12 ), то падающая волна, проникая в ионосферу, распространяется до такого уровня, при котором показатель преломления обращается в нуль. На этой высоте происходит полное отражение волны от слоя ионосферы. С увеличением частоты падающая волна всё глубже проникает в слой ионосферы. Максимальная частота волны, которая отражается от слоя ионосферы при вертикальном падении, называется критической частотой слоя:

(6)

Критическая частота слоя F 2 (главный максимум, рис. 12 ) изменяется в течение суток и от года к году приблизительно от 5 до 10 Мгц. Для волн с частотой w > wкр n всюду > 0, т. е. волна проходит через слой, не отражаясь.

При наклонном падении волны на ионосферу максимальная частота волны, возвращающейся на Землю, оказывается выше wкр. Радиоволна, падающая на ионосферу под углом j0, испытывая рефракцию, поворачивается к Земле на той высоте, где j(z ) = p/2. Условие отражения при наклонном падении имеет вид: n (z ) = sinj0. Частоты волн, отражающихся от данной высоты при наклонном и вертикальном падении, связаны соотношением: wнакл = wверт secj0. Максимальная частота волны, отражающейся от ионосферы при данном угле падения, т. е. для данной длины трассы, называется максимальной применимой частотой (МПЧ).

Двойное лучепреломление. Существенное влияние на Р. р. оказывает магнитное поле Земли H 0 = 0,5 э, пронизывающее ионосферу. В постоянном магнитном поле ионизированный газ становится анизотропной средой. Попадающая в ионосферу волна испытывает двойное лучепреломление , т. е. расщепляется на 2 волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. В магнитном поле H 0 на электрон, движущийся со скоростью u, действует Лоренца сила , под действием которой электрон вращается с частотой (гироскопическая частота) вокруг силовых линий магнитного поля. Вследствие этого изменяется характер вынужденных колебаний электронов ионосферы под действием электрического поля волны.

В простейшем случае, когда направление Р. р. перпендикулярно H 0 (Е лежит в одной плоскости с H 0), волну можно представить в виде суммы 2 волн с Е ^ Н 0 и Е || Н 0. Для первой волны (необыкновенной) характер движения электронов и, следовательно, n изменяются, для второй (обыкновенной) они остаются такими же, как и в отсутствии магнитного поля:

; (7)

В случае произвольного направления Р. р. относительно магнитного поля Земли формулы более сложные: как n 1, так и n 2 зависят от wH. Поскольку отражение радиоволны происходит от слоя, где n = 0, то обыкновенная и необыкновенная волны отражаются на разной высоте. Критические частоты для них также различны.

По мере Р. р. в ионосфере из-за различия в скорости накапливается сдвиг фаз между волнами, вследствие чего поляризация результирующей волны непрерывно изменяется. Линейная поляризация падающей волны в определённых условиях сохраняется, но плоскость поляризации при распространении поворачивается (см. Вращение плоскости поляризации ). В общем случае поляризация обеих волн эллиптическая.

Рассеяние радиоволн. Помимо регулярной зависимости электронной концентрации N от высоты (рис. 12 ), в ионосфере постоянно происходят случайные изменения концентрации. Ионосферный слой содержит большое число неоднородных образований различного размера, которые находятся в постоянном движении и изменении, рассасываясь и возникая вновь. Вследствие этого в точку приёма, кроме основного отражённого сигнала, приходит множество рассеянных волн (рис. 13 ), сложение которых приводит к замираниям - хаотическим изменениям сигнала.

Существование неоднородных образований приводит к возможности рассеянного отражения радиоволн при частотах, значительно превышающих максимальные частоты отражения от регулярной ионосферы. Аналогично рассеянию на неоднородностях тропосферы это явление обусловливает дальнее Р. р. (метрового диапазона).

Характерные неоднородные образования возникают в ионосфере при вторжении в неё метеоритов . Испускаемые раскалённым метеоритом электроны ионизируют окружающую среду, образуя за летящим метеоритом след, диаметр которого вследствие молекулярной диффузии быстро возрастает. Ионизированные следы создаются в интервале высот 80-120 км , длительность их существования колеблется от 0,1 до 100 сек. Радиоволны зеркально отражаются от метеорного следа. Эффективность этого процесса зависит от массы метеорита.

Нелинейные эффекты. Для сигналов не очень большой мощности две радиоволны распространяются через одну и ту же область ионосферы независимо друг от друга (см. Суперпозиции принцип ), ионосфера является линейной средой. Для мощных радиоволн, когда поле Е волны сравнимо с характерным «плазменным полем» E p ионосферы, e и s начинают зависеть от напряжённости поля распространяющейся волны. Нарушается линейная связь между электрическим током и полем Е.

Нелинейность ионосферы может проявляться в виде перекрёстной модуляции 2 сигналов (Люксембург - Горьковский эффект ) и в «самовоздействии» мощной волны, например в изменении глубины модуляции сигнала, отражённого от ионосферы.

Особенности распространения радиоволн различного диапазона в ионосфере. Начиная с УКВ волны, частота которых выше максимально применимой частоты (МПЧ), проходят через ионосферу. Волны, частота которых ниже МПЧ, отражаясь от ионосферы, возвращаются на Землю. Такие радиоволны называются ионосферными, используются для дальней радиосвязи на Земле. Диапазон ионосферных волн снизу по частоте ограничен поглощением. Поэтому связь при помощи ионосферных волн осуществляется в диапазоне коротких волн и в ночные часы (уменьшается поглощение) в диапазоне средних волн. Дальность Р. р. при одном отражении от ионосферы ~ 3500-4000 км , т. к. угол падения j на ионосферу из-за выпуклости Земли ограничен: наиболее пологий луч касается поверхности Земли (рис. 14 ). Связь на большие расстояния осуществляется за счёт нескольких отражений от ионосферы (рис. 15 ).

Длинные и сверхдлинные волны практически не проникают в ионосферу, отражаясь от её нижней границы, которая является как бы стенкой сферического радиоволновода (второй стенкой волновода служит Земля). Волны, излучаемые антенной в некоторой точке Земли, огибают её по всем направлениям, сходятся на противоположной стороне. Сложение волн вызывает некоторое увеличение напряжённости поля в противолежащей точке (эффект антипода , рис. 16 ).

Радиоволны звуковых частот могут просачиваться через ионосферу вдоль силовых линий магнитного поля Земли. Распространяясь вдоль магнитной силовой линии, волна уходит на расстояние, равное нескольким земным радиусам, и затем возвращается в сопряжённую точку, расположенную в др. полушарии (рис. 17 ). Разряды молний в тропосфере являются источником таких волн. Распространяясь описанным способом, они создают на входе приёмника сигнал с характерным свистом (свистящие атмосферики ).

Для радиоволн инфразвуковых частот, частота которых меньше гироскопической частоты ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение которой описывается уравнениями гидродинамики . Благодаря наличию магнитного поля Земли любое смещение проводящего вещества, создающее электрический ток, сопровождается возникновением сил Лоренца, изменяющих состояние движения. Взаимодействие между механическими и электромагнитными силами приводит к перемещению случайно возникшего движения в ионизированном газе вдоль магнитных силовых линий, т. е. к появлению магнито-гидродинамических (альфвеновских) волн, которые распространяются вдоль магнитных силовых линий со скоростью 4,5×104 м /сек (r - плотность ионизированного газа).

Космическая радиосвязь. Когда один из корреспондентов находится на Земле, диапазон длин волн, пригодных для связи с космическим объектом, определяется условиями прохождения через атмосферу Земли. Т. к. радиоволны, частота которых < МПЧ (5-30 Мгц ), не проходят через ионосферу, а волны с частотой > 6-10 Ггц поглощаются в тропосфере, то волны от космического объекта могут приниматься на Земле при частотах от ~ 30 Мгц до 10 Ггц. Однако и в этом диапазоне атмосфера Земли не полностью прозрачна для радиоволн. Вращение плоскости поляризации при прохождении через ионосферу при приёме на обычную антенну приводит к потерям, которые уменьшаются с ростом частоты. Только при частотах > 3 Ггц ими можно пренебречь (рис. 18 ). Эти условия определяют диапазон радиоволн для дальней связи на УКВ при использовании спутников.

Для связи с объектами, находящимися на др. планетах, необходимо учитывать поглощение и в атмосфере этих планет. При осуществлении связи между 2 космическими кораблями, находящимися вне атмосферы планет, особенное значение приобретают миллиметровые и световые волны, обеспечивающие наибольшую ёмкость каналов связи (см. Оптическая связь ). Сведения о процессах Р. р. в космическом пространстве даёт радиоастрономия .

Подземная и подводная радиосвязь. Земная кора, а также воды морей и океанов обладают проводимостью и сильно поглощают радиоволны. Для осадочных пород в поверхностном слое земной коры s » 10-3-10-2 ом -1м -1. В этих средах волна практически затухает на расстоянии £ l. Кроме того, для сред с большой s коэффициент поглощения увеличивается с ростом частоты. Поэтому для подземной радиосвязи используются в основном длинные и сверхдлинные волны. В подводной связи наряду со сверхдлинными волнами используют волны оптического диапазона.

В системах связи между подземными или подводными пунктами может быть использовано частичное распространение вдоль поверхности Земли или моря. Вертикально поляризованная волна, возбуждаемая подземной передающей антенной, распространяется до поверхности Земли, преломляется на границе раздела между Землёй и атмосферой, распространяется вдоль земной поверхности и затем принимается подземной приёмной антенной (рис. 19 ). Глубина погружения антенн достигает десятков м. Системы этого типа обеспечивают дальность до нескольких сотен км и применяются, например, для связи между подземными пунктами управления при запуске ракет. Системы др. типа используют подземные волноводы - слои земной коры, обладающие малой проводимостью и, следовательно, малыми потерями. К таким породам относятся каменная соль , поташ и др. Эти породы залегают на глубинах до сотен м и обеспечивают дальность Р. р. до нескольких десятков км. Дальнейшим развитием этого направления является использование твёрдых горных пород (гранитов, гнейсов, базальтов и др.), расположенных на больших глубинах и имеющих малую проводимость (рис. 20 ). На глубине 3-7 км s может уменьшиться до 10-11 ом -1м -1. При дальнейшем увеличении глубины благодаря возрастанию температуры создаётся ионизация (обращенная ионосфера) и проводимость увеличивается. Образуется подземный волновод толщиной в несколько км , в котором возможно Р. р. на расстоянии до нескольких тыс. км. Одна из основных проблем подземной и подводной связи - расчёт излучения и передачи энергии от антенн , расположенных в проводящей среде.

Преимущество систем подземной связи состоит в их независимости от бурь, ураганов и искусственных разрушений на поверхности Земли. Кроме того, благодаря экранирующему действию верхних проводящих осадочных пород системы подземной связи обладают высокой помехозащищенностью от промышленных и атмосферных шумов.

Лит.: , Распространение радиоволн вдоль земной поверхности, М., 1961; , Распространение электромагнитных волн и ионосфера, М., 1972; , Нелинейная теория распространения радиоволн в ионосфере, М., 1973; , Волны в слоистых средах, 2 изд., М., 1973; , Распространение волн в турбулентной атмосфере, М., 1967; , Распространение волн в среде со случайными неоднородностями, М., 1958; , Распространение электромагнитных волн в плазме, М., 1967; , Обзор работ, связанных с подземным распространением радиоволн. Проблемы дифракции и распространения радиоволн, Сб. 5, Л., 1966; , Распространение радиоволн, 4 изд., М., 1972; , Системы подземной радиосвязи, «Зарубежная радиоэлектроника», 1963, № 10; Габиллард [Р.], Дегок [П.], Уэйт [Дж.], Радиосвязь между подземными и подводными пунктами, там же, 1972, № 12; Ратклифф Дж. А., Магнито-ионная теория и ее приложения к ионосфере, пер. с англ., М., 1962.

Рис. 3. к ст. Распространение радиоволн.

Рис. 1. Область, существенная при распространении радиоволн: А - передающая антенна; В - приёмная; Z1 и Z2 - их высоты над поверхностью Земли.

Рис. 2. Лепестковая структура поля в точке приёма.

Рис. 4. Высота шарового сегмента h, характеризующая выпуклость Земли.

Рис. 5. График изменения напряжённости поля с расстоянием r (в км ). По вертикальной оси отложена величина множителя ослабления, который определяется отношением напряжённости поля в реальных условиях распространения к величине напряжённости поля при распространении в свободном пространстве.

Рис. 6. Изменение напряженности Е поля волны при пересечении береговой линии.

Рис. 7. к ст. Распространение радиоволн.

Рис. 8. Усиление радиоволн при дифракции на непологих неровностях.

Рис. 9. Искривление радиолучей в тропосфере в результате ее неоднородности.

Рис. 10. Схематическое изображение линии радиосвязи, использующей рассеяние радиоволн на неоднородностях тропосферы.

Рис. 11. Смещение электронов ионосферы под действием поля волны Е приводит к появлению дополнительного поля DE.

Рис. 12. Изменение концентрации N электронов в ионосфере с высотой; Е, F1, F2 - слои ионосферы.

Рис. 13. Рассеяние радиоволн на неоднородностях ионосферы.

Рис. 14. к ст. Распространение радиоволн.

Рис. 15. к ст. Распространение радиоволн.

Рис. 16. Зависимость напряженности Е поля волны от расстояния до передатчика r в отсутствии поглощения (пунктир) и при учете поглощения.

Рис. 17. к ст. Распространение радиоволн.

Рис. 18. Зависимость потерь энергии за счет вращения плоскости поляризации волны от частоты для трех значений угла возвышения b.

Рис. 19. Система подземной связи с частичным распространением радиоволн вдоль земной поверхности. Вторичные волны изображены условно.

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

Начнём с того, что великий изобретатель-практик электрических машин Никола Тесла активно использовал в своих экспериментах электромагнитные колебания, про которые раньше никто не знал, и как мы знаем теперь из учебников физики средней школы — порождают вид электромагнитных волн — радиоволны. Но повторюсь, во времена Теслы о существовании электромагнитных волн никто не знал. Интуитивно, путём наблюдений, Тесла понимал, что в результате его экспериментов в окружающем пространстве появляется какой-то вид энергии. Но в те времена не существовало такой науки и оборудования позволяющего раскрыть понятие электромагнитных волн. Поэтому, это явление рассматривалось как философская категория, которую Тесла называл — эфиром .

Нынче рассуждают, что «эфир» и электромагнитные волны это разные понятия. Они совершенно не правы лишь потому, что абсолютно все изобретения Теслы основаны на использовании обыкновенного переменного электрического тока и электромагнитных полей, которые в свою очередь и порождают не «эфир», а самые обыкновенные электромагнитные волны в радиочастотном диапазоне. Именно то, что в настоящее время называется электромагнитными волнами, в те времена Никола Тесла называл эфиром. Других вариантов объяснений быть не может. Можно долго рассуждать о том, что это разные понятия. Например, кто то с пеной у рта пытается доказать что скорость распространения эфира больше скорости света, а доказательная база отсутствует. С помощью какого эксперимента Никола Тесла мог измерить скорость эфира? Нигде такой информации нет. Вывод один, он её не измерял, а лишь предполагал. Вы скажете, что эфир несёт в себе энергию? Отвечу, любая электромагнитная волна несёт в себе энергию! Мне попадались практические схемы радиоприёмников без батареек, предназначенные не для работы на наушники или динамическую головку, а для получения постоянного электрического тока «из воздуха» теми жителями мегаполисов, которые живут рядом с мощными телерадиоцентрами.

– синусоидальное электромагнитное колебание в пространстве. Общепринятое сокращение – ЭМВ . Электромагнитная волна – это свет, тепловые лучи невидимого инфракрасного диапазона, рентгеновские лучи и радиоволны. Разница лишь в мощности колебаний и длине волны. В частности Тесла имел дело с радиоволнами. Фактически он и является изобретателем радио, а не Маркони с Поповым. Последние смогли описать радиоволны, поэтому их и считают изобретателями радио. Тесла был первооткрывателем, но у него в те времена не было научных объяснений, которые намного позже появились у Попова и Маркони. Кроме того, они использовали радиоволны в практических полезных целях. Тесла, в своё время писал о переносе информационного сигнала с помощью передатчика и приемника, но увлёкшись молниями, дойти до изобретения их практических устройств просто не успел. Резонный вопрос, а что же колеблется в электромагнитных волнах? Отвечу, далеко не углубляясь в ядерную физику, это фотоны – сгустки энергии, обладающие электромагнитным полем, но не обладающие массой. Именно эти свойства позволяют фотонам быть переносчиками энергии. Учёные-ядерщики и дальше «раскладывают» фотоны на составляющие элементы. Мы не будем продолжать этот ход мыслей, пожелаем им успехов, потому что это не по теме статьи. Если Вы противник считать что «эфир», это – электромагнитные волны, тогда попытайтесь принять, что «эфир» это – фотоны, а электромагнитные волны, это по своей сути — направленный поток фотонов.

Источником радиоволны может быть любой электрический проводник, в котором движется переменный электрический ток. На практике, источником радиоволны является высокочастотный генератор, колебательная энергия которого, распространяется в пространство через радиоантенну. Первым действующим источником радиоколебаний, изобретённым человеком и используемым с очевидным и рациональным успехом, был радиопередатчик-радиоприёмник Маркони (или Попова), использующий в качестве высокочастотного генератора – высоковольтный накопитель с искровым разрядником, подключенным на антенну — обыкновенный вибратор Герца.


схема передатчика и приемника Попова — Маркони

Свойства распространения электромагнитных волн

Дальность распространения электромагнитной волны зависит от частоты колебания переменного электрического тока (электромагнитного колебания). На частотах от единиц до тысяч Герц, соответствующих звуковому диапазону волн, электромагнитная волна, созданная в пространстве с помощью индуктивности, распространяется на расстояние, не превышающее одного-двух десятков метров, поэтому полезного практического применения не имеет. На частотах от сотен килогерц и выше, что соответствует диапазонам радиоволн, электромагнитная волна способна распространяться более чем на тысячи километров.

Дальность распространения электромагнитной волны так же зависит от мощности протекающего по проводнику тока. Как было указано ранее, низкочастотная электромагнитная волна полезного практического применения не имеет, но зато имеет вредное влияние. В качестве примера вредного влияния можно привести влияние высоковольтной линии электропередач (ЛЭП) с напряжением в несколько десятков тысяч вольт на радиоприёмник проезжающего мимо автомобиля. Вокруг высоковольтных проводов формируется мощное электромагнитное поле, которое значительно превосходит по амплитуде электромагнитные колебания удалённых радиостанций и в приемнике вместо радиостанции слышен низкочастотный гул сетевого напряжения. Другой случай, когда происходит «глушение» радиоприёмника вблизи силовых линий электропередач при сетевом напряжении всего в 380 вольт, но токе свыше 100 ампер. В первом случае у нас большое напряжение, а во втором — большой ток. Из учебника физики средней школы известно, что мощность электрического тока в проводнике связана с напряжением и током через выражение Р=U*I . А чем больше мощность, тем дальше распространение электромагнитного поля и как следствие – электромагнитной волны, образуемой электромагнитным полем. Этим и объясняется влияние мощности на дальность распространения.

Почему волна, про которую здесь пишется, называется электромагнитной? Потому, что она состоит из электрического и магнитного синусоидального колебания. Эти два вида колебаний ориентированы в пространстве друг относительно друга перпендикулярно – ровно на 90 градусов.
Когда электрическая волна «горизонтальна» — сориентирована параллельно линии горизонта, а магнитная волна соответственно «вертикальна» — сориентирована перпендикулярно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную горизонтальную поляризацию .

Когда электрическая волна «вертикальна» — сориентирована перпендикулярно линии горизонта, а магнитная волна соответственно «горизонтальна» — сориентирована параллельно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную вертикальную поляризацию .

Если электрическая волна (соответственно и магнитная волна) имеет наклон относительно линии горизонта – угол не равный нулю или 90 градусов, тогда говорят, что электромагнитная волна имеет линейную наклонную поляризацию .

Существует так же другой вид поляризации, используемый для повышения дальности передачи (приема) и лучшей помехозащищённости радиоприёмной аппаратуры – круговая поляризация – вид поляризации электромагнитной волны, при котором за один период электромагнитного колебания радиоволна делает полный оборот на 360 градусов. Один из видов круговой поляризации – эллиптическая поляризация — «приплюснутая» в одной из плоскостей круговая поляризация.

Все указанные виды поляризации определяются устройством и ориентированием радиоантенны.

Практическая важность поляризации заключается в том, что если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой, или её вообще не будет.

Примером использования поляризации света – как вида электромагнитных колебаний является 3D-кинотеатр. Принцип действия систем 3D-видеоизображения основан на следующем: Фильм снимается на кинокамеры (видеокамеры) разнесённые в пространстве, как два глаза человека. При его показе в кинотеатре, два независимых проектора закрываются поляризационными светофильтрами, точно такие же светофильтры в виде плёнок стоят в очках кинозрителей. Правый проектор и правый глаз зрителя прикрыты светофильтром с вертикальной поляризацией, а левый проектор и глаз – фильтром с горизонтальной поляризацией. Таким образом, правый глаз видит картинку от правого проектора, а левый глаз от левого. В качестве фильтров могут использоваться и другие варианты разделения световых волн, но статья не об этом, поляризация света – один из способов селекции электромагнитных волн.

Электромагнитные волны (радиоволны) распространяются в разных средах с разной скоростью. Скорость распространения радиоволн в вакууме приблизительно равна скорости света 300 000 км/сек . В воздухе радиоволны распространяются с чуть меньшей скоростью, но не на много, поэтому принимается та же цифра – 300 000 км/сек. Поскольку обыкновенная вода обладает электропроводностью, то её поверхность для радиоволн является отражателем, а часть энергии радиоволн тратится на нагрев поверхностных слоев воды. Типичным примером этому является микроволновая печь, разогревающая молекулы воды, содержащиеся в подогреваемой пище. Металлы не пропускают радиоволны, отражая всю энергию электромагнитных колебаний.

Немаловажным, являются свойства радиоволн распространяться в зависимости от их длины волны. Напомню, длина электромагнитной волны связана с частотой колебаний через скорость её распространения в вакууме (скорость света):

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ» , включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ» .

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

Для передачи информации радиоволну необходимо модулировать сигналом содержащим информацию. Длинные, средние и короткие волны обычно имеют амплитудную модуляцию, что на английском звучит — amplitude modulation «АМ» . Ультракороткие волны обычно имеют частотную модуляцию, что на английском звучит — frequency modulation , и у буржуев обозначаются как — «FМ» (по нашему «ЧМ» ).

Кроме деления радиоволн на диапазоны необходимо добавить, что в зависимости от направления и путей распространения радиоволн, они бывают поверхностные (земные) (1) – распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы и пространственные (2) – распространяющиеся через верхние слои атмосферы и с отражением от ионосферы (3).

Существует понятие, чем выше длина волны (меньше частота), тем она больше способна огибать препятствия. И наоборот, чем короче длина волны (выше частота), тем прямолинейнее(лучше по прямой) радиоволна распространяется.

Длинные волны способны распространяться вдоль поверхности земли и воды, но едва достигают ионосферы. Это свойство используется для организации связи с морскими судами – связь имеется практически в любой точке моря.

Средние волны распространяются вдоль поверхности земли и воды, а также отражаются ионосферой.

Короткие волны распространяются «скачками», периодически отражаясь от ионосферы и земной поверхности.

Ультракороткие волны и более высокие частоты распространяются прямолинейно, как свет от любого источника света, они не способны изгибаться вдоль земного шара, а ионосфера для них прозрачна.

Простым примером использования длинноволнового диапазона является радиосвязь с подводными лодками. Для того, чтобы не быть замеченной противником выходя на связь с командованием флота, лодка всплывает на очень короткое время. Но если бы волны, используемые для связи с подводной лодкой распространялись бы «скачками», то не в любой точке земного шара была бы связь. А на практике, в каком бы месте земного шара лодка бы не всплыла, связь появляется сразу. Конечно в последнее время с развитием техники, подводные лодки используют различные диапазоны, в том числе космическую связь (через спутники связи) на СВЧ-диапазоне.

Примером использования радиоволн диапазонов УКВ, ДМВ и СМВ является импульсная радиолокация, где свойство прямолинейного распространения радиоволн этих диапазонов используется для точного определения пространственных координат самолётов, стай птиц и других воздушных объектов. Даже проводится разведка погоды – уровня и интенсивности облачности на больших расстояниях.

От одного и того же радиопередающего устройства радиоволны отраженные от земной поверхности могут встретиться с неотражёнными волнами, или волнами, отражёнными от другого участка земной поверхности, или верхних слоёв атмосферы. В этом случае, происходит синфазное сложение радиоволн , или противофазное вычитание . В результате, в вертикальной плоскости пространства образуется изрезанная косекансная диаграмма направленности антенны. При синфазном переотражении радиоволн от земной поверхности на этих участках образуются зоны максимального переотражения – зоны Френеля . Если радиопередатчик имеет всенаправленную антенну (например штыревую), то зоны Френеля будут представлять из себя много колец на поверхности земли различного диаметра, в центре которых находится антенна. Диаметр колец может быть от десятков метров, до нескольких километров.

Для Вашей эрудиции: До военной агрессии в Югославии, американцы придавали большое значение противорадиолокационным ракетам, как средству уничтожения радаров противника. Противорадиолокационная ракета имеет самонаводящуюся радиоголовку, которая наводит ракету на сигнал радара. Но после этой своей миротворческой операции по превращению Югославии в марионеточное государство, они стали перевооружаться на ракеты с тепловыми головками самонаведения. Оказалось, что головки самонаведения противорадиолокационных ракет наводились на зоны Френеля, которые у вращающегося радара всё время меняются, в результате чего вычислитель ракеты не правильно определял координаты радара, и в лучшем случае ракета падала в одну из зон Френеля. Так, купленный у Советского Союза ещё в 80-х годах радар метрового диапазона волн, более 50 суток войны надежно обеспечивал Югославские ПВО информацией о полётах американцев. С его помощью был сбит не один чудо-самолёт-невидимка звёздно-полосатых. А по телевизору как обычно – врали, что американцы потерь не несут.

Сильное влияние на распространение радиоволн оказывают препятствия. Как правило, препятствия обладают отражающим свойством. В качестве препятствий могут выступать различные предметы как природного, так и искусственного происхождения. Как было написано ранее, радиоволны отражаются от земной поверхности. Стоит отметить, что если грунт сильно сухой (например в пустыне), то отражение радиоволн намного хуже, чем когда земля сырая от дождя. Так, расстояние связи у одной и той же аппаратуры связи на море на 50 – 70 процентов больше, чем на суше. Отражают радиоволны деревья и облака. Перечисленные естественные препятствия являются хорошими отражателями, потому, что в их состав входит вода. К искусственным препятствиям, отражающим радиоволны относятся различные металлические конструкции, в том числе арматура зданий и сооружений.

Влияние типа используемой антенны на качество и направленность приема (излучения) радиоволн

Куда и как будет распространяться радиоволна, определяется размерами и формой антенны-излучателя радиоволн. Самой простой радиоантенной является Вибратор Герца . Это элементарный «кубик», который является основой для построения всех типов антенн.

Вибратор Герца – это два проводника, расходящиеся в противоположные стороны от «точки подключения энергии». По своей сути это «развернутый» колебательный контур. Для лучшего излучения радиосигнала, расстояние от конца одного проводника до конца другого должно быть равно половине длины волны излучаемого (или принимаемого) электромагнитного колебания. Это необходимо для того, чтобы на концах вибратора была максимальная разность потенциалов напряжения сигнала, а в центре вибратора – максимальная амплитуда тока. Правда необходимо использовать коэффициент укорочения, который учитывает скорость распространения электрического сигнала по поверхности проводников, которая намного меньше чем в вакууме. В зависимости от частоты сигнала и металла, из которого изготовлен вибратор коэффициент укорочения может быть в пределах от 0,65 до 0,85. То есть вибратор должен быть равен половине длины волны, помноженной на коэффициент укорочения.

Для уменьшения габаритов антенны иногда используется вибратор, по длине равный одной четвёртой длины волны. Могут использоваться и другие соотношения, но при этом, качество приёма (передачи) и направленные свойства антенны изменяются.

Диаграмма направленности полуволнового вибратора имеет форму тороида вращения – форму «бублика». Если вибратор расположить горизонтально относительно земли, то зоны максимального приема (передачи) будут на линии перпендикулярной вибратору, а зоны минимального приема по торцовым сторонам вибратора. Но учтите, это без учёта влияния переотражения от земли. Если учитывать влияние переотражения от земной поверхности, проекция диаграммы направленности антенны (ДНА) вибратора окажется слегка вытянутой в направлениях максимумов.
На рисунке изображены тороид вращения и проекция диаграммы направленности антенны на горизонтальную поверхность с учётом влияния земли.

– это видоизменённый вибратор Герца, у которого в качестве одного проводника используется сам штырь, а в качестве другого противовес – кусок свисающего вниз провода, человек, у которого в руках мобильная рация, или поверхность земли. Диаграмма направленности штыревой антенны, это тот же торроид, находящийся в горизонтальной площади, только за счёт отражения от земли торроид приплюснут снизу. Зона максимального приёма будет во все стороны, а минимального – над штыревым вибратором. Зону минимального приема, находящуюся над антенной называют – мёртвая зона , или мёртвая воронка .

В зависимости от соотношения длины штыревой антенны к длине волны, диаграмма направленности антенны в вертикальной плоскости так же изменяется. На рисунке схематично изображено, влияние отношения длины штыря к длине волны на формирование диаграммы направленности антенны в вертикальной плоскости.

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

Если антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны . Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

Именно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

Следующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора . Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал» , состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка , в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения , или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

Выводы на основе распространения и сложности формирования радиоволн

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель» . Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.

Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.

Радиоволна

Длина волны(λ) - это расстояние между соседними гребнями волны.
Амплитуда(а) - максимальное отклонения от среднего значения при колебательном движении.
Период(T) - время одного полного колебательного движения
Частота(v) - количество полных периодов в секунду

Существует формула, позволяющая определять длину волны по частоте:

Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

«УКВ», «ДВ», «СВ»
Сверхдлинные волны - v = 3-30 кГц (λ = 10-100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.

Длинные волны (ДВ) v = 150-450 кГц (λ = 2000-670 м).


Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

Средние волны (СВ) v = 500-1600 кГц (λ = 600-190 м).


Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны (КВ) v= 3-30 МГц (λ = 100-10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

Ультракороткие Волны (УКВ) v = 30 МГц - 300 МГц (λ = 10-1 м).


Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц - 3 ГГц (λ = 1-0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц - 30 ГГц (λ = 0,1-0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM - FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM - амплитудная модуляция


Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ - первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

FM - частотная модуляция


Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.

На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины
Интерференция - в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.


Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».

Дифракция - явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

PS:
Надеюсь, информация описанная мной будет полезна и принесет некоторое понимание по данной теме.

Если бы Максвелл не предсказал существование радиоволн, а Герц не открыл их на практике, наша действительность была бы совсем другой. Мы не могли бы быстро обмениваться информацией при помощи радио и мобильных телефонов, исследовать далёкие планеты и звёзды с помощью радиотелескопов, наблюдать за самолётами, кораблями и другими объектами с помощью радиолокаторов.

Каким же образом радиоволны помогают нам в этом?

Источники радиоволн

Источниками радиоволн в природе являются молнии – гигантские электрические искровые разряды в атмосфере, сила тока в которых может достигать 300 тысяч ампер, а напряжение – миллиарда вольт. Молнии мы наблюдаем во время грозы. Кстати, они возникают не только на Земле. Вспышки молний были обнаружены на Венере, Сатурне, Юпитере, Уране и других планетах.

Практически все космические тела (звёзды, планеты, астероиды, кометы и др.) также являются естественными источниками радиоволн.

В радиовещании, радиолокации, спутниках связи, стационарной и мобильной связи, различных системах навигации применяются радиоволны, полученные искусственным путём. Источником таких волн служат высокочастотные генераторы электромагнитных колебаний, энергия которых передаётся в пространство с помощью передающих антенн.

Свойства радиоволн

Радиоволны – это электромагнитные волны, частота которых находится в интервале от 3 кГц до 300 ГГц, а длина - от 100 км до 1 мм соответственно. Распространяясь в среде, они подчиняются определённым законам. При переходе из одной среды в другую наблюдается их отражение и преломление. Присущи им и явления дифракции и интерференции.

Дифракция , или огибание, происходит, если на пути радиоволн встречаются препятствия, размеры которых меньше длины радиоволны. Если же их размеры оказываются бόльшими, то радиоволны отражаются от них. Препятствия могут иметь искусственное (сооружения) или природное (деревья, облака) происхождение.

Отражаются радиоволны и от земной поверхности. Причём, поверхность океана отражает их примерно на 50% сильнее, чем сýша.

Если препятствие является проводником электрического тока, то какую-то часть своей энергии радиоволны отдают ему, а в проводнике создаётся электрический ток. Часть энергии расходуется на возбуждение электротоков на поверхности Земли. Кроме того, радиоволны расходятся от антенны кругами в разные стороны, подобно волнам от брошенного в воду камешка. По этой причине радиоволны со временем теряют энергию и затухают. И чем дальше от источника находится приёмник радиоволн, тем слабее сигнал, дошедший до него.

Интерференция, или наложение, вызывает взаимное усиление или ослабление радиоволн.

Радиоволны распространяются в пространстве со скоростью, равной скорости света (кстати, свет – это тоже электромагнитная волна).

Как и любые электромагнитные волны, радиоволны характеризуются длиной и частотой волны. С длиной волны частота связана соотношением:

f = c/ λ ,

где f – частота волны;

λ - длина волны;

c - скорость света.

Как видим, чем больше длина волны, тем меньше её частота.

Радиоволны разбиваются на следующие диапазоны : сверхдлинные, длинные, средние, короткие, ультракороткие, миллиметровые и децимиллиметровые волны.

Распространение радиоволн

Радиоволны разной длины распространяются в пространстве не одинаково.

Сверхдлинные волны (длина волны от 10 км и более) легко огибают большие препятствия вблизи поверхности Земли и очень слабо поглощаются ею, поэтому энергии они теряют меньше других радиоволн. Следовательно, затухают они также гораздо медленнее. Поэтому в пространстве такие волны распространяются на расстояния до нескольких тысяч километров. Глубина их проникновения в среду очень велика, и их используют для связи с подводными лодками, находящимися на большой глубине, а также для различных исследований в геологии, археологии и инженерном деле. Способность сверхдлинных волн легко огибать Землю позволяет исследовать с их помощью земную атмосферу.

Длинные , или километровые , волны (от 1 км до 10 км, частота 300 кГц – 30 кГц) также подвергаются дифракции, поэтому способны распространяться на расстояния до 2 000 км.

Средние , или гектометровые , волны (от 100 м до 1 км, частота 3000 кГц – 300 кГц) хуже огибают препятствия на поверхности Земли, сильнее поглощаются, поэтому гораздо быстрее затухают. Они распространяются на расстояния до 1 000 км.

Короткие волны ведут себя иначе. Если мы настроим автомобильный радиоприёмник в городе на короткую радиоволну и начнём двигаться, то по мере удаления от города приём радиосигнала будет всё хуже, а на расстоянии примерно 250 км он прекратится совсем. Однако спустя некоторое время радиотрансляция возобновится. Почему так происходит?

Всё дело в том, что радиоволны короткого диапазона (от 10 м до 100 м, частота 30 МГц – 3 МГц) у поверхности Земли затухают очень быстро. Однако волны, уходящие под большим углом к горизонту, отражаются от верхнего слоя атмосферы – ионосферы, и возвращаются обратно, оставляя позади себя сотни километров «мертвой зоны». Далее эти волны отражаются уже от земной поверхности и снова направляются к ионосфере. Многократно отражаясь, они способны несколько раз обогнуть земной шар. Чем короче волна, тем больше угол отражения от ионосферы. Но ночью ионосфера теряет отражательную способность, поэтому в тёмное время суток связь на коротких волнах хуже.

А ультракороткие волны (метровые, дециметровые, сантиметровые с длиной волны короче 10 м), не могут отражаться от ионосферы. Распространяясь прямолинейно, они пронизывают её и уходят выше. Это их свойство используют для определения координат воздушных объектов: самолётов, стай птиц, уровня и плотности облаков и др. Но и огибать земную поверхность ультракороткие волны тоже не могут. Из-за того что они распространяются в пределах прямой видимости, их применяют для радиосвязи на расстоянии 150 – 300 км.

По своим свойствам ультракороткие волны близки к световым волнам. Но световые волны можно собрать в пучок и направить его в нужное место. Так устроены прожектор и фонарик. Точно так же поступают и с ультракороткими волнами. Их собирают специальными зеркалами-антеннами и узкий пучок посылают в нужном направлении, что особенно важно, например, в радиолокации или спутниковой связи.

Миллиметровые волны (от 1 см до 1 мм), самые короткие волны радиодиапазона, схожи с ультракороткими волнами. Они также распространяются прямолинейно. Но серьёзной помехой для них являются атмосферные осадки, туман, облака. Кроме радиоастрономии, высокоскоростной радиорелейной связи они нашли применение в СВЧ технике, используемой в медицине и в быту.

Субмиллиметровые , или децимиллиметровые, волны (от 1 мм до 0,1 мм) по международной классификации также относятся к радиоволнам. В природных условиях они почти не существуют. В энергии спектра Солнца занимают ничтожно малую долю. Поверхности Земли не достигают, так как поглощаются парами воды и молекулами кислорода, находящимися в атмосфере. Созданные искусственными источниками, применяются в космической связи, для исследования атмосфер Земли и других планет. Высокая степень безопасности этих волн для организма человека позволяет применять их в медицине для сканирования органов.

Субмиллиметровые волны называют «волнами будущего». Вполне возможно, что они дадут учёным возможность изучать строение молекул веществ совершенно новым способом, а в будущем, может быть, даже позволят управлять молекулярными процессами.

Как видим, каждый диапазон радиоволн применяется там, где особенности его распространения используются с максимальной пользой.